NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE: CIT315

COURSE TITLE: OPERATING SYSTEM




CIT315 COURSE GUIDE

a i
T

NOUN

National Open University of Nigeria
University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@adumg
NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5

All Rights Reserved

Printed byNOUN PRESS

January 2022



CIT315 COURSE GUIDE

COURSE
GUIDE

CIT315

OPERATING SYSTEM

Course Team
Prof. Olumide Babatope Longe (Developer/Writer)
Prof. Virginia Ejiofor - Content Editor

Dr. Francis B. Osang — HOD/Internal Quality Conteabert



CIT315 COURSE GUIDE

CONTENT PAGE

Table of Contents

[ g (T I8 i {'o] o FU OSSP PP i
What You Will BeLearning in thiSCOUISe.......cooi e v
(001U = [ 1o BT U PSR RPURURPRPRN iv
COUISE ODJECLIVES. ... ettt s ettt st et te e e s be s be e e e st e eseenbesbeeeesbesre et e nbenssenteane e e nre e iv
WOrking through thiS COUISR. ... .ot e e e ae e sneas vi
COUMSE IMAEEITA ...ttt e b b e e b e et e b e s he e e e ebees s e e e s ne e e see e vi
I 0T )AL 0 £ SSPRRRR vii
Presentation SCREAUIE.............oiii et Viii
AASSESSIMIENT . ... ettt e bbb e Rt ehe e R e e Re e eRe £ R R e R eae e eRRe e Ee e n e e neenEeere e ne e IX
Tutor-Marked ASSIGNMENT (TIMAS) ..o bbb ee e IX
Final Examination and GradiNng..........ccccueiiiirie s siesee s s e sassressesnssssessnnns X
CoUrsSE Marking SCNEIME ......ciiiiiiieieseee et sttt e s te et et e sbe e s s e te s e eneas X
Facilitator/TUutors and TULOMTAIS. ......ooueeeiiie e e X
SUIMIMIBIY. ..ttt ettt ettt s h e et et ae e e s e et e £ ae e eab e e e e e s £ ea b e e b e e b e e be e ebe e eheeamneean e emeeeneenneennis Xi



CIT315 COURSE GUIDE

Introduction

An operating system serves as a liaison betweecotimputer's user and the computer's hardware.
The objective of an operating system is to offeoanfortable and efficient environment in which

a user may run applications.

An operating system is a piece of software thatrotgthe hardware on a computer. The hardware
must have adequate measures to guarantee the arapstem's proper operation and to prevent

user applications from interfering with the systeproper functioning.

Internally, operating systems vary significantlytieir composition, since they are arranged in a
variety of ways. The creation of a new operatingtay is a significant undertaking. Prior to
beginning the design process, it is critical toéhavfirm grasp of the system's objectives. These

objectives serve as the foundation for selectingragst different algorithms and tactics.

Due to the size and complexity of an operatingesysit must be constructed piecemeal. Each of
these components should be a distinct part of yhes with well-defined inputs, outputs, and
functions. An operating system is a software progthat handles the hardware of a computer.
Additionally, it serves as a foundation for applica programs and serves as a liaison between
the computer user and the computer hardware. Arieabke feature of operating systems is their

diversity in doing these functions.

Before delving into the minutiae of computer sysfemctioning, it's necessary to understand the
system's structure. We begin by reviewing the fumelatal operations of the operating system,
including initialization, I/O, and storage. Additially, we present the fundamental computer

architecture that enables the development of aiwgrsperating system.

Due to the size and complexity of an operatingesysit must be constructed piecemeal. Each of
these components should be a distinct part of yaes with well-defined inputs, outputs, and
functions. We will present an overview of the keymponents of an operating system in this

course.



CIT315 COURSE GUIDE

What You Will Be Learning in this Course

This course consists of units and a course guildis. dourse guide tells you briefly what the
course is about, what course material you will ®@giand how you can work through these
materials. In addition, it advocates some genaralalines for the amount of time you are likely

to spend on each unit of the course in order topteta it successfully.

It gives you guidance in respect of your Tutor-MatlAssignments which will be made
available in the assignment file. There will beulag tutorial classes that are related to the

course. It is advisable for you to attend thesertait sessions.

The course will prepare you for the technical cpte®f operating system.

Course Aim

Operating System CIT315 aims to furnish you witbugh knowledge onprinciple of operating

system.

Course Obijectives

To achieve the aim set out, the course has a sdtjectives. Each unit has specific objectives

which are included at the beginning of the unit.

You may wish to refer to them during your studghb@ck on your progress. You should always
look at the unit objectives after completion of eanit. By doing so, you would know whether

you have followed the instruction in the unit.

Below are the comprehensive objectives of the ebassa whole. By meeting these objectives,
you should have achieved the aims of the coursevdsole. In addition to the aim earlier stated,
this course sets to achieve some objectives. Tdftes, going through the course, you should be

able to:

e Explain what process is
¢ |dentify the states of process

¢ Identify the importance of context switching
v



CIT315 COURSE GUIDE

e Know how to interrupt a running process

e Explain the concepts of context switching

e Explain how a running process is interrupted vistamy call
e Narrate switches from procedure to procedure

e Explain the concept of interrupt

e Demonstrate masking and unmasking of interruptesgu
e Demonstrate handling of interrupts

e Explain the concepts of thread

o Differentiate between thread and process

e Write simple thread creation code/instructions

e Explain the types of threads

¢ Implement a thread at user, kernel and hybrid level

e Demonstrate the Thread Control Block diagram

e Explain the thread life cycle

e Show thread states and transition

e Define race condition

e Explain how race condition occur

e Resolve race condition

e Describe the concept of deadlock

e Write a program code that avoid deadlock

e Explain deadlock and starvation resolution usingagghores and monitors
e Solving synchronization problems

e Describing the techniques of memory swapping

e Demonstrate how resources are allocated

e Describe memory allocation to processes

e Use the best fit method to fix memory allocatiosuiss

e Explain the concept of memory segment and paging

e Solving memory allocation issues into non-contigeimemory spaces
e Understand the importance of cache

¢ How companies have succeeded as a result of caesimem
%



CIT315 COURSE GUIDE

¢ Find out the cause of thrashing in operating system

e Demonstrate policies to address thrashing issues

Working through this course
To complete this course, you are required to reath study unit, read the textbooks and read

other materials which may be provided by the Nati@pen University of Nigeria.

Each unit contains self-assessment exercises andrt@in point in the course you would be
required to submit assignments for assessment pespédt the end of the course there is a final
examination. The course should take you aboutad ¢6t17 weeks to complete. Below you will
find listed all the components of the course, witat have to do and how you should allocate your

time to each unit in order to complete the coursémae and successfully.

This course entails that you spend lots of timelirea | recommend that you take advantage of

knowledge sharing among other students

Course Material

The major components of the course are:
1. Course Guide

2. Study Units

3. Presentation Schedule

4. Tutor-Marked Assignments

5. References/Further Reading

Vi



CIT315

Study Units

COURSE GUIDE

The study units in this course are as follows:

Module 1
Unit 1
Unit 2

Unit 3

Module 2
Unit 1
Unit 2

Unit 3

Module 3
Unit 1
Unit 2
Unit 3

Unit 4

Module 4
Unit 1
Unit 2
Unit 3
Unit 4

Unit 5

Process Management
Processes and State
Context Switching

Interrupts and Interrupts Handler

Concurrency — Multithreading
Threads & Multithreading
Types of Threads

Threads Data Structure and Lifecycle

Process Synchronization

Race condition, Critical Region and Mut&iclusion
Deadlocks

Synchronization

Synchronization Problems

Memory Management
Memory Swapping
Memory Partition
Virtual Memory
Caching and Thrashing

Replacement Policies

Vii



CIT315 COURSE GUIDE

Modules 1 and 2 introduce the notion of processek@ncurrency, which are at the core of
contemporary operating systems. In a system, apsas the unit of work. A system of this kind
is composed of a collection of simultaneously ragnprocesses, some of which are operating-

system processes (those that execute system aadié)earemainder of which are user processes.

Module 3 described process synchronization, andldela Deadlock is the state of permanent
blocking of a set of processes each waiting foneteeoccur. Part of the discussion in the module
is a race condition and synchronization problemsnitbr and semaphores are few among many

synchronization problem solutions. All of which aliscussed extensively in this module

Finally, module 4 is concerned with the managenténnain memory throughout a process's
operation. To maximize the CPU's use and the spetdwhich it responds to its users, the
computer must maintain several processes in menidmre are several memory management

algorithms, and the success of any one technigsiéuigtion-dependent.

Each unit consists of one or two weeks’ work andude an introduction, objectives, reading
materials, exercises, conclusion, summary, tutaketh assignments (TMAS), references and
other resources. The units direct you to work oareses related to the required reading. In
general, these exercises test you on the matgoalfiave just covered or require you to apply it
in some way and thereby assist you to evaluate gamgress and to reinforce your comprehension
of the material. Together with TMAS, these exeris@l help you in achieving the stated learning

objectives of the individual units and of the caues a whole.

Presentation Schedule

Your course materials have important dates foetirey and timely completion and submission of
your TMAs and attending tutorials. You should rerbemthat you are required to submit all your

assignments by the stipulated time and date. Youldiguide against falling behind in your work.

viii



CIT315 COURSE GUIDE

Assessment

There are three aspects to the assessment of theecd-irst is made up of self-assessment
exercises. Second, consists of the tutor-markedgraments and third is the written

examination/end of course examination.

You are advised to do the exercises. In tacklirg aksignments, you are expected to apply
information, knowledge and techniques you have aegath during the course. The assignments
must be submitted to your facilitator for formasassment in accordance with the deadline stated
in the presentation schedule and the assessmentTfie work you submit to your tutor for
assessment will count for 30% of your total coursek. At the end of the course, you will need
to sit for a final or end of course examinatiorabbut three hours duration. This examination will

count for 70% of your total course mark.

Tutor-Marked Assignment (TMAS)

The TMA is a continuous assessment component af gaurse. It accounts for 30% of the total
score. You will be given four TMAs to answer. Thiifehese must be answered before you are
allowed to sit for end of course examination. ThAE would be given to you by your facilitator
and should be returned after you have done thgrassint. Assignment questions for the units in
this course are contained in the assignment fita Will be able to complete your assignments
from the information and material contained in yoeading, references and study units. However,
it is desirable in all degree level of educatiordémonstrate that you have read and researched
more into your references, which will give a widéw point and may provide you with a deeper

understanding of the subject.

Make sure that each assignment reaches your &oilibn or before the deadline given in the
presentation schedule and assignment file. If for )i@ason you cannot complete your work on
time, contact your facilitator before the assignmedue to discuss the possibility of an extension
Extension will not be granted after the due datessin exceptional circumstances.

iX



CIT315 COURSE GUIDE

Final Examination and Grading

The end of course examination for operating syg@im315) will be for three (3) hours and it has
a value of 70% of the total course score. The ematimn will consist of questions, which will
reflect the type of self-testing, practice exer@se tutor-marked assignment problems you have

previously encountered. All areas of the courséh@lassessed.

Use the time between finishing the last unit arttingl for the examination to revise the whole
course. You might find it useful to review yourfsigst, TMAs and comments on them before the

examination. The end of course examination covdmation from all parts of the course.

Course Marking Scheme

Assignment Marks

Assignment 1 — 4 For assignment, best three mdritsedfour counts at
10% each, i.e., 30% of Course Marks.

End of Course Examination  70% Of the overall Coliseks.

Total 100% of Course Material.

Facilitators/Tutors and Tutorials

There are 16 hours of tutorials provided in suppbthis course. You will be notified of the dates,
time, and location of these tutorials as well asrtame and phone number of your facilitator, as

soon as you are allocated to a tutorial group.

Your facilitator will mark and comment on your ggsnents, keep a close watch on your progress
and any difficulties you might face and provideistssice to you during the course. You are

expected to mail your Tutor-Marked Assignmentsdanfacilitator before the schedule date (at



CIT315 COURSE GUIDE

least two working days are required). They willrharked by your tutor and returned to you as

soon as possible.
Do not delay to contact your facilitator by telepkemr e-mail if you need assistance.

The following might be circumstances in which yoauld find assistance necessary, hence you

would have to contact your facilitator if:

e You do not understand any part of the study omassl readings
e You have difficulty with self-tests

¢ You have question or problem with an assignmentithr the grading of an assignment.

You should endeavour to attend the tutorials. Thike only chance to have face to face contact
with your course facilitator and to ask questiorsolr may be answered instantly. You can raise

any problem encountered in the course of your study

To have more benefits from course tutorials, yauavised to prepare a list of questions before

attending them. You will learn a lot from particijpay actively in discussions.

Summary

Operating System is a course that intends to inértiee learner with the principles of the operating
system. Upon completing this course, you will beaiipged with the knowledge of process
management consisting of processes and concurrpragss synchronization, issues occurring
during process execution such as race conditiozeilldck, and solutions to free yourself from
synchronization problems. You will be trained onmnoey management schemes, algorithms and

technigques to solve resource allocation and memddyessing scenarios

| wish you success in the course and | hope yalifigery interesting.

Xi



CIT315

CONTENTS
Module 1
Unit 1

Unit 2

Unit 3

Module 2
Unit 1
Unit 2

Unit 3

Module 3
Unit 1
Unit 2
Unit 3

Unit 4

Module 4
Unit 1
Unit 2
Unit 3
Unit 4

Unit 5

COURSE GUIDE
PAGE
Process Management ..........ccovieiii i e e 1
Processes and State...........ccooiiiiiiiiiiie e 2
Context SWItChING........cooi i 12

Interrupts and Interrupts Handler.............ccoeeeivvennn 21

Concurrency — Multithreading.............coooooiiiiiin s 31
Threads & Multithreading.............coooiii i 32
Types of ThreadS........c.ovvi i, 49
Threads Data Structure and Lifecycle....................... 60
Process Synchronization.............coooiiiiiicii e, 69
Race condition, Critical Region and Mut&iclusion......... 70
DeadIOCKS. ...\ et e 79
Synchronization...........o.covii i 97
Synchronization Problems.............ccocooviiiiicci i, oda
Memory Management..........o.uveiieiiiiiiiiiee e 115
MEMOIY SWaPPING ... e en ettt et e ee e eenens 116
Memory Partition..........coovviiiii i e e e 124
Virtual MemMOrY.... ..o 137
Caching and Thrashing...........c.coooi i 147
Replacement POlICIES.......cc.vvvvi i, 157

Xii



CIT315 OPERATING SYSTEM

Module 1: Process Management

Introduction of Module

Early computer systems allowed only one prograrbeexecuted at a time. This program had
complete control of the system and had accesd theakystem's resources. In contrast, current-
day computer systems allow multiple programs told@@ded into memory and executed
concurrently. This evolution required firmer co@od more compartmentalization of the various
programs; and these needs resulted in the notiarpodcess which is a program in execution. A
process is the unit of work in a modern time-shgsgstem. The concept of a process helps us
understand how programs execute in an operatirtgray#\ process is the unit of work in most
systems. Systems consist of a collection of preses3perating-system processes execute system

code, and user processes execute user code. #dl flnecesses may execute concurrently.

In this module, we are going to look into processéate of processes and how processes can be

switchedto improve multitasking of processors.
Unit 1: Processes and State
Unit 2: Context Switching

Unit 3: Interrupts and Interrupts Handler



CIT315 OPERATING SYSTEM

Unit 1 Processes and States
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 What is a Process?
3.2 Process Control Block
3.3 State process model and state diagrams
3.3.1 A Two state model
3.3.2 A Five state model
3.4 Scheduling Algorithms
3.5 Cases/Examples
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary

7.0References/Further Reading



CIT315 OPERATING SYSTEM

@1.0 Introduction

All multiprogramming operating systems, from singker systems such as Windows to
mainframe systems such as IBM’s mainframe operaystem, which can support thousands
of users, are built around the concept of the m®ce

In general, theoperating system must switch betwieerexecution of multiple processes, to
maximize processor utilization while providing reaable response time.The operating
system must allocate resources to processes inrcoahce with a specific policy (e.g., certain

functions that are of higher priority) while at tb@me time avoiding deadlock. The Operating
System may be required to support inter processraamcation and user creation of processes,
both of which may aid in the structuring of apptioas.

U@ 2.0 Intended Learning Outcomes (ILOS)

At the endof this unit, the students will be able to

e Explain what process is
¢ |dentify the states of process
e |dentify the importanceof context switching

e Know how to interrupt a running process



CIT315 OPERATING SYSTEM

3.0 Main Content
3.1 What is a process?

A process is a program in execution. A processarerthan the program code, which is sometimes
known as theext section It also includes the current activity, as repnéseé by the value of the
program counter and the contents of the processmgisters. A process generally also includes
the processtack, which contains temporary data (such as functenmameters, return addresses,
and local variables), anddata section which contains global variables and@ap, which is
memory that is dynamically allocated during proaesstime. A program is a passive entity that
does not perform any actions by itself; it has @oeliecuted if the actions it calls for are to take
place. A process is an execution of a programctiialy performs the actions specified in a
program. An operating system shares the CPU resp@among processes. This is how it gets user

programs to execute.

max
Stack

heap

data

Stack

0
Figure 1.1:Process in memory

When a user initiates execution of a program, tBec@ates a new process and assigns a unique
id to it. It now allocates some resources to trecess— sufficient memory to accommodate the
address space of the program, and some devicesasuglkeyboard and a monitor to facilitate
interaction with the user. The process may makéesy<galls during its operation to request
additional resources such as files. We refer toatlh@ress space of the program and resources
allocated to it as the address space and resoofrties process, respectively.

4



CIT315 OPERATING SYSTEM

3.2 Process Control Block (PCB)

To represent a process, we need a data structbreh) we simply call a process control block
(PCB). It either contains or refers to all the peseess information mentioned above, including
the address space. To achieve efficient sharinesfe resources the O/S needs to keep track of

all processes at all times.

Suppose that the processor begins to execute & giegram code and we refer to executing entity
as a process. At any given point of time, while phegram is executing the O/S uniquely keeps
track of this process state by maintaining a t&bt@vn as Process Control Block (PCB) shown in

Figure 1.2 below

Identifier

State

Priority

PI‘Og[‘ﬂII’l counter

Memory pointers

Context data

/0 status
information

Accounting
information

Figure 1.2Process Control Block diagram

e Identifier: A unique identifier associated with this processdistinguish it from all other

processes.
e State If the process is currently executing, it ishe trunning state.

e Priority : Priority level relative to other processes.

e Program counter. The address of the next instruction to be exetute

5



CIT315 OPERATING SYSTEM

Memory pointers: Includes pointers to the program code and dat@cested with this process,

plus any memory blocks shared with other processes.

o Context data These are data that are present in registergeiprocessor while the process is

executing.

e |/O status information: Includes outstanding I/O requests, /0O devicesigagd to this

process, a list of files in use by the process,smadn.

e Accounting information: May include the amount of processor time and kclkme used,

time limits, account numbers, and so on
3.3 State Process Model and Diagrams

As a process executes, it changes state. Thedtatg@rocess is defined in part by the current

activity of that process. Each process may be enadrthe following states:

o New. The process is being created.

e Running. Instructions are being executed.

e Ready. The process is waiting to be assigned to a psoces

e Blocked/Waiting: A process that cannot execute until some eventreceuch as the
completion of an 1/O operation.

e Terminated. The process has finished execution.

3.3.1 Atwo State process model

The first step in designing an OS to control preesss to describe the behavior that we would
like the processes to exhibit. We can constructsthglest possible model by observing that at
any time, a process is either being executed bpe@epsor or not. In this model, a process may be

in one of two stateskunning or Not Running, as shown in Figure 1.3.

Dispatch

Enter

Pause



CIT315 OPERATING SYSTEM

Figure 1.3:A two state process model

From time to time the currently running process el interrupted and the dispatcher (O/S) selects
some other process to run. The former process nifomasheRunning state to thé&lot Running

state, and one of the other processes moves fuheing state

3.3.2 A Five State process model

In a five-state process model, implementation akievieadequate: Some processes in the Not
Running state are ready to execute, while othersblcked, waiting for an 1/0O operation to

complete. Thus, using a single queue, the dispatadhdd not just select the process at the oldest
end of the queue. Rather, the dispatcher would tsean the list looking for the process that is

not blocked and that has been in the queue thesing

A more natural way to handle this situation isgbtshe Not Running state into two states: Ready

and Blocked. This is shown in Figure 1.4

Dispatch

Time-out

Event
occurs

Blocked

Figure 1.4: A five state process model

Event
wait

In fig. 1.4,the possible transitions are as follows:
* Null— New:A new process is created to execute a program.

* New—> ReadyThe OS will move a process from the New state ¢oRkady state when it is

prepared to take on an additional process.



CIT315 OPERATING SYSTEM

Ready—» Running:When it is time to select a process to run, thecB&ses one of the

processes in the Ready state. This is the jobeo$theduler or dispatcher.

* Running — EXxit: The currently running process is terminated byQlsaf the process indicates

that it has completed, or if it aborts.

* Running — Ready:The most common reason for this transition is th@trunning process has
reached the maximum allowable time for uninterrdgeecution.

Running — Blocked:A process is put in the Blocked state if it reqaestmething for which it
must wait. For example, a process may requestvicedrom the OS that the OS is not prepared
to perform immediately. Or the process may initeteaction, such as an 1/O operation, that must
be completed before the process can continue. depsomay be blocked when it is waiting for

another process to provide data or waiting for asage from another process.
3.4 Scheduling Algorithms

Scheduling deals with the problem of deciding whiélihe process in the ready queue is to be
allocated to the CPU. There are three characsistomparison used to make a substantial

difference in the determination of the best aldponit The criteria include the following:

e CPU Utilization

e Throughput

e Turnaround time
e Waiting time and;

e Response time
Two scheduling schemes exist. The Preemptive amdpg¥eemptive Schemes

Preemptive scheduling occurs in the event thatoggss transitions from running to ready or
waiting to ready, During this period, the resourgasstly CPU cycles) are assigned to the process
and subsequently removed. If the process stillGRY burst time left, it is then put back in the
ready queue. This procedure will wait in the regdgue for another opportunity to run. While in
non-preemptive scheduling, when a process quitsaasitions from the running to the waiting
state, scheduling occurs. Once the resources (GElgs} are allotted to a process, the process

retains control of the CPU until it is terminated enters a waiting state. Non-preemptive

8



CIT315 OPERATING SYSTEM

scheduling does not interrupt a running CPU prooe#se midst of its execution. Instead, it waits

until the process's CPU burst duration is over teeédlocating the CPU to another process.
Now we describe several of the many CPU schedaliggrithms that exist:

1. First-In, First-Out (FIFO) Scheduling Algorithm
FCFS is the simplest of all scheduling algorithiiitse key concept of this algorithm is that
it allocates the CPU in the order in which the psses arrive. That is the process that
requests the CPU first is allocated the CPU fifsie implementation of FCFS policy is
managed with a FIFO (First-in-first out) queue. \Wihibe CPU is assigned to a process,
that process retains it until it releases it, eitheterminating or by requesting 1/0 devices.
The FIFO algorithm is appropriate for the Batch raiag system. Under the FIFO
approach, the average waiting time is often fdehgthy, particularly if requests for brief
CPU burst processes wait behind long ones. FIF@nieexample of non-preemptive
scheduling.

2. Shortest-Job First (SJF) Scheduling Algorithm
When the CPU is available, this algorithm assigihéal the process that has the smallest
next CPU burst. If the two processes have the damgth of CPU burst then FCFS
scheduling algorithms are followed. The key conaédphis algorithm is “CPU is allocated
to the process with least CPU-burst time”. Thisathm is considered to be an optimal
algorithm, as it gives the minimum average waitinge. The disadvantage of this
algorithm is the problem of knowing ahead of tirhe tength of time for which CPU is
needed by a process. A prediction formula may leel i predict the amount of time for
which CPU may be required by a process.
The SJF algorithm may be either preemptive or non-peemptive
The choice arises when a new process arrives irettty queue while a previous process
is executing.

= A preemptive SJF will preempt a currently exaogitprocess and starts the
execution of newly entered process
=  While non-preemptive SJF will allow the currerglyecuting process to complete
its burst time without any interruption in its exéon.
3. Round-Robin Scheduling Algorithm



CIT315 OPERATING SYSTEM

The Round-Robin (RR) scheduling algorithm is-destyrespecially for time-sharing
systems. It is similar to FCFS scheduling algorithmt preemption is added to switch
between processes. A small unit of time call¢nn@ quantum (or time-slice) is defined
where range is kept between 10 to 100ms. Inalgisrithm Ready Queue is assumed to
be a circular Queue. The CPU scheduler (short-tego®s around the ready queue,
allocating the CPU to each process for a time valesf up to 1 time quantum.

To implement RR scheduling, the ready queue is &s@ FIFO Queue of the processes.
New processes are added to the-tail of the readyeyurhe CPU scheduler picks the first
process from the ready queue, sets a timer torupteit after 1 time quantum, and
dispatches the process.

In RR one of the two situations may arise.

e  The process may haveC®U burst of less than 1 time quantumin this case, the
process itself will release the CPU voluntarily eldtheduler will then proceed to the
next process in the ready queue.

e Otherwise, if the CPU burst of the curremriyining process is longer than 1 time
guantum, the timer will go off and will cause an interruptthe O/S. A context switch

will be executed, and the process will be put att#il of the ready queue.

3.5  Cases/Example

Consider the time-sharing system below which ugeseslice of 10 ms. It contains two processes
P1 and P2. P1 has a CPU burst of 15 ms followeshtlyO operation that lasts for 100 ms, while
P2 has a CPU burst of 30 ms followed by an 1/O afp@n that lasts for 60 ms. Execution of P1
and P2 are described in Figure 1.5. Actual exeoubfoprograms proceeds as follows: System
operation starts with both processes in the retatg st time 0. The scheduler selects process P1
for execution and changes its state to runningl@®ms, P1 is preempted and P2 is dispatched.
Hence P1's state is changed to ready and P2’'s statkanged to running. At 20 ms, P2 is
preempted and P1 is dispatched. P1 enters theduthte at 25 ms because of an I/O operation.
P2 is dispatched because it is in the ready sét85 ms, P2 is preempted because its time slice
elapses; however, it is dispatched again sincemer process is in the ready state. P2 initiates an
I/O operation at 45 ms. Now both processes aredarblocked state

10



CIT315 OPERATING SYSTEM

CPU activity

P,
/O activaty !

+ + $ t t t
0 X 40 60 {1 100 120

Time —»

Figure 1.5: Real-time share system with two process scenario

|!|
Discussion

Is it possible for two processors to execute tiig@g@rocesses?

4.0 Self-Assessment Exercise
What is a process creation and principal events thiacan create a process?
Answer

The triggering of an event raising to new non-egisicess is referred to process creation. When a
new process is to be added to those currently baartpged, the operating system builds the data
structures that are used to manage the procesallandtes address space in main memory to the

process.
There are four principal events that can triggerdreation of a process

1. System initialization.

2. Execution of a process-creation system call bynaing process.
3. A user request to create a new process.
4

Initiation of a batch job.

What is the possible occurrence of a child process being terminated by parent process?

11



CIT315 OPERATING SYSTEM

Answer
A parent may terminate the execution of one ofliigdren for a variety of reasons, such as these:

e The child has exceeded its usage of some of tlreiress that it has been allocated. (To
determine whether this has occurred, the parent hawe a mechanism to inspect the state
of its children.)

e The task assigned to the child is no longer require

e The parent is exiting, and the operating systens am allow a child to continue if its

parent terminates.

%

19

Using the process model, it becomes much easikirtio about what is going on inside the system.

5.0 Conclusion

Some of the processes run programs that carryosotands typed in by a user. Other processes
are part of the system and handle tasks such agntpout requests for file services or managing
the details of running a disk or a tape drive. Whedlisk interrupt occurs, the system makes a
decision to stop running the current process andhra disk process, which was blocked waiting
for that interrupt. Thus, instead of thinking abouerrupts, we can think about user processes,
disk processes, terminal processes, and so onhwlock when they are waiting for something
to happen. When the disk has been read or the atbartyped, the process waiting for it is
unblocked and is eligible to run again.

L1

A computer user and the operating system haverdiftesiews of execution of programs. The user

6.0 Summary

is concerned with achieving execution of a progiana sequential or concurrent manner as
desired, whereas the OS is concerned with allotatfaesources to programs and servicing of
several programs simultaneously, so that a suitadi@bination of efficient use and user service

may be obtained. In this chapter, we discusseduwsarspects of these two views of execution of

12



CIT315 OPERATING SYSTEM

programs. A process is a model of execution ofagnam. When the user issues a command to

execute a program, the OS creates the primary gsdoeit.

The operating system allocates resources to a ggasd stores information about them in the
process context of the process. To control operaifdhe process, it uses the notion of a process
state. The process state is a description of themactivity within the process; the processestat
changes as the process operates. The fundameatasprstates are: ready, running, blocked,
terminated, and suspended. The OS keeps informatizcerning each process in a process control
block (PCB). The PCB of a process contains thegeoestate, and the CPU state associated with
the process if the CPU is not currently executisgnstructions. The scheduling function of the
kernel selects one of the ready processes andigpatching function switches the CPU to the

selected process through information found in itegss context and the PCB.

13



CIT315 OPERATING SYSTEM

ey

— 7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(id. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)0Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

OS Process States - javatpoint (n.d.). Retrieved May 1, 2022, from
https://www.javatpoint.com/os-process-states

Process Table and Process Control Block (PCB) - kSeeGeeks (2020, June 28).
https://www.geeksforgeeks.org/process-table-andgs®-control-block-pcb/

Thomas, A., & Dahlin, M. (20150Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

Williams, L. (n.d.).CPU Scheduling Algorithms in Operating SysteRwstrieved May 1, 2022,
from https://www.guru99.com/cpu-scheduling-algamghhtml

14



CIT315 OPERATING SYSTEM

Unit 2 Context Switching
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Context Switching
3.2Procedures
3.3System calls
3.4 Cases/Examples
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary

7.0 Reference/Further studies

15



CIT315 OPERATING SYSTEM

@1.0 Introduction

We use the termcbntext’ to mean the setting in which execution is curetdking place. This
setting determines what information, in the fornstafrage contents, is available. When a thread
makes a system call, the processor switches fran msde to privileged mode and the thread
switches from user context to system context; mftion within the operating system is now
available to it.Note that these contexts overlap: for instance, a thieaa user context or the

system context enters and exits numerous procedutexts.

u@ 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will be able to

e Explain the concepts of context switching
e Explain how a running process is interrupted vistem call

¢ Narrate switches from procedure to procedure

)

u--—-!
(S

11

|

3.0 Main Content

3.1 Context/Process Switching

Changing the execution environment of one proce#isat of another is called process switching,

which is the basic mechanism of multitasking.

Switching the CPU to another process requires gahia state of the old process and loading
the saved state of the new process. The contextpodcess is represented in the PCB of the
process; it includes the value of the CPU registaesprocess state, and memory management
information. When a context switch occurs, the apeg system saves the context of the old

process in its PCB and loads the saved contexteohéw process scheduled to run. Context-
16



CIT315 OPERATING SYSTEM

switch time is pure overhead, because the systess do useful work while switching. Its
speed varies from machine to machine, dependinthemrmemory speed, the number of
registers that must be copied, and the existencgpetial instructions (such as a single

instruction to load or store all registers). Typispeeds are less than 10 milliseconds.

Process Po Process P
Operating System

Executin
g Interrupt or system call

‘ Save state into PCBa J
idle™y

‘ Reload from PCB1 ‘

c Interrupt or system call LExecutng
idle

‘ Save state into PCB1 ‘

|
I
E idle)
| Reload from PCB. ‘

Executing

Figure 2.1: CPU Switching from one process to a@moth

The switching time between two processesare pueenead, because the system does no useful

work.

Process switching overhead depends on the sizbeoftate information of a process. Some
computer systems provide special instructions tuce the process switching overhead, e.g.,
instructions that save or load the PSW and all ge+prpose registers, or flush the address

translation buffers used by the memory managen@n{MMU).

Switching can take place when the O/S has confrifleosystem. An O/S can acquire control by:
e Interrupt: an external event which is independent on thieunsons.
e Trap: that is associated with current instruction exexuti

e Supervisor call/system call: that is explicit call to the O/S

17



CIT315 OPERATING SYSTEM

Context Switching Steps

The steps involved in context switching are asfed—

« Save the context of the process that is currentining on the CPU. Update the process

control block and other important fields.

e Move the process control block of the above proaassthe relevant queue such as the

ready queue, 1/0O queue etc.
e Select a new process for execution.

o Update the process control block of the selectedgss. This includes updating the process

state to running.
e Update the memory management data structures aisee.q

« Restore the context of the process that was prsligunning when it is loaded again on
the processor. This is done by loading the prewalises of the process control block and
registers.

3.2 Procedures
The following code illustrates a simple procedua# in C:
int main( ) {

inti;

int a;

i =sub(a, 1);

return(0);
}
int sub(int x, inty) {
18



CIT315 OPERATING SYSTEM
inti;
int result = 1;
for (I=0; i<y; i++)
result *=x;

return (result);

}

The purpose of the procedure sub is pretty stringhard: it computes ¥ How the context is
represented and is switched from that of main & tf sub depends on the architecture. The
context of main includes any global variables (northis case) as well as its local variables,d an
a. The context of sub also includes any globalaldes, its local variables, i and result, and its
arguments, x and y. On most architectures, glotadbles are always found at a fixed location in
the address space, while local variables and angtsaee within the current stack frame.

3.3 System Calls

System calls involve the transfer of control froseucode to system (or kernel) code and back
again. Keep in mind that this does not involve @&dwbetween different threads, the original
thread executing in user mode merely changes gsution mode to kernel (privileged) mode.
However, it is now executing operating-system caais effectively part of the operating system.
Most systems provide threads with two stacks, on@$e in user mode and one for use in kernel
mode. Thus, when a thread performs a system cdlsartches from user mode to kernel mode,
it also switches from its user-mode stack to iisi&kmode stack. For an example, consider a C
program running on a Unix system that calls wifiam the programmer’s perspective, write is a
system call, but a bit more work needs to be daerb we enter the kernel. Write is actually a
routine supplied in a special library of (userlgyebgrams, the C library. Write is probably wnitte

in assembt language; the heart of it is some instruction taaises a trap to occur, thereby making
control enter the operating system. Prior to tlusp the thread had been using the thread’s user

stack. After the trap, as part of entering kernelde the thread switches to using the thread’s

19



CIT315 OPERATING SYSTEM

kernel stack. Within the kernel our thread entei@udt-handler routine that determines the nature

of the fault and then calls the handler for thet@vslystem call.
3.4 Case/Example

The following diagram depicts the process of congexitching between the two processes P1
and P2.

Process P1 CPU Process P2
Executing
Interrupt or system call
[ Save state into PCB1 }
‘ - Idle

[ Reload state from PCB2 }

L idie Interrupt or system call Exacuting
L] Y

[ Save stale inlo PCB2 ]

‘ ~ |die

[ Reload state from PCB1 J

= [

Execuling
» AfterA

Figure 2.1b: Switching between two processes

In the above figure, you can see that initiallye fprocess P1 is in the running state and the
process P2 is in the ready state. Now, when soteerimption occurs then you have to switch
the process P1 from running to the ready state afteing the context and the process P2 from

ready to running state. The following steps willgexformed:

1. Firstly, the context of the process P1 i.e. theepss present in the running state will be

saved in the Process Control Block of process&@PICB1.

2. Now, you have to move the PCBL1 to the relevant quesl ready queue, /0O queue,

waiting queue, etc.

3. From the ready state, select the new processditathe executed i.e. the process P2.

20



CIT315 OPERATING SYSTEM

4. Now, update the Process Control Block of process @2 CB2 by setting the process
state to running. If the process P2 was earliecabesl by the CPU, then you can get the

position of last executed instruction so that yan cesume the execution of P2.

5. Similarly, if you want to execute the process Paiagthen you have to follow the same

steps as mentioned above(from step 1 to 4).

4.0 Self-Assessment Exercises
Context switch adds an overhead. Why?
Answer

1. In a multitasking computer environment, overheaahig time not spent executing tasks. It
is overhead because it is always there, even iimgtproductive is going on context
switching is a part of the overhead but not they airt.

2. Because it takes time away from processing thédpsk hand.

For example, if there is only one task running, grecessor can give it 100% of

its processing time. There is no overhead of cargexching
What is a context switch?
Answer

The term "context switch" refers to the act of sgvihe state of a process or thread in order to
recover it and restart execution at a later tinfes Enables numerous processes to share a single
central processing unit (CPU), which is a necessh@aracteristic of a multitasking operating
system. When a process terminates; when the til@eses indicating that the CPU should switch
to another process, when the current process stusjself, when the current process needs time

consuming I/O, when an interrupt arises from somegce aside from the timer

\P‘c:‘/|
5.0 Conclusion

In the Operating System, there are cases when goa to bring back the process that is in the

running state to some other state like ready stateit/block state. If the running process wants

21



CIT315 OPERATING SYSTEM

to perform some 1/O operation, then you have toaesrthe process from the running state and
then put the process in the 1/0O queue. Sometinesptocess might be using a round-robin
scheduling algorithm where after every fixed timmagtum, the process has to come back to the
ready state from the running state. So, these psogeitchings are done with the help of Context
Switching. In this unit, we learned the conceptaftext switching in the operating system, and

we will also learn about the advantages and disatdges of context switching.

L1

Context switching is a process that involves swiitghthe CPU from one process or task to

6.0 Summary

another. In this phenomenon, the execution of tieegss that is present in the running state is
suspended by the kernel and another process theg¢sent in the ready state is executed by the
CPU. It is one of the essential features of thetitasking operating system. The processes are
switched so fast that it gives the user an illugiwat all the processes are being executed at the
same time.System calls involve the transfer of mdritom user code to system (or kernel) code
and back again. When a thread performs a systenamalswitches from user mode to kernel

mode, it also switches from its user-mode stadistkernel-mode stack.

22



CIT315 OPERATING SYSTEM

ey

o 7.0 Further Studies/References

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(id. Marcia & J. Tracy (eds.); Fourth).
Pearson Education.

Dhananjay, M. D. (2009)0Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (20150Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

Introduction of System Call - GeeksforGeeks (2019, August 16).
https://www.geeksforgeeks.org/introduction-of-systeall/

What is Context Switchin@2020, April 5). https://www.tutorialandexamplems/what-is-context-
switching

Other Study sources

https://www.scribd.com/document/196387986/Contaxtt&h-Question-Answer

https://afteracademy.com/blog/what-is-context-skiig-in-operating-system

23



CIT315 OPERATING SYSTEM

Unit 3 Interrupts and Interrupts Handler

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Types of Interrupts
3.3 Interrupt Handlers
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary

7.0 Reference/Further studies

24



CIT315 OPERATING SYSTEM

@1.0 Introduction

In early years of computing processor has to veaithe signal for processing, so processor has to
check each and every hardware and software proigréme system if it has any signal to process.
This method of checking the signal in the systenpfocessing is called polling method. In this
method, the problem processor @t waste several clock cycles just to check tgaadiin the
system. Because of this, the processor will beconsy unnecessarily. If any signal came for the
process, processor will take some time to prodessignal due to the polling process in action.

So, system performance also will be degraded aspbrese time of the system will also decrease.

To overcome this problem engineers introduced a meahanism, in this mechanism processor
will not check for any signal from hardware or saite but instead hardware/software will only

send the signal to the processor for processing.sidnal from hardware or software should have
highest priority because processor should leavectineent process and process the signal of

hardware or software. This mechanism of procegsiagignal is called interrupt of the system.

u@ 2.0 Intended Learning Outcomes (ILOS)

At the end of this unit, students will be able to

e Explain the concept of interrupt
o Demonstrate masking and unmasking of interruptestju

e Demonstrate handling of interrupts

25



CIT315 OPERATING SYSTEM

3.0 Main Content

3.1 Type of Interrupts

Interrupt is an event that requires the operatysgesn’s attention at any situation. The computer
designer associates an interrupt with each evdmisa/sole purpose is to report the occurrence of
the event to the operating system and enable petéorm appropriate event handling actions.
When an I/O device has finished the work giventtaticauses an interrupt (assuming that
interrupts have been enabled by the operatingmystedoes this by asserting a signal on a bus
line that it has been assigned. This signal isatlieteby the interrupt controller chip on the
parentboard, which then decides what to do. If tieeointerrupts are pending, the interrupt
controller handles the interrupt immediately. Hoemwvif another interrupt is in progress, or
another device has made a simultaneous requeshigier-priority interrupt request line on the
bus, the device is just ignored for the momenthis case it continues to assert an interrupt signa

on the bus until it is serviced by the CPU.
Examples of interrupts
Here are some examples of the causes of interriyige that not all need any intervention from
the user.
e Hardware issue, such as a printer paper jam
e Key press by the user, e.g. CTRL ALT DEL
o Software error
e Phone call (mobile device)

o Disk drive indicating it is ready for more data

There are two types of interrupts: Hardware andvi&oe interrupt

26



CIT315 OPERATING SYSTEM

Hardware Interrupts

An electronic signal sent from an external devichardware to communicate with the processor
indicating that it requires immediate attentionr Ewample, strokes from a keyboard or an action
from a mouse invoke hardware interrupts causinglRe to read and process it. So it arrives
asynchronously and during any point of time whieaiting an instruction. Some key concepts

such as Trap, Flag and watchdog timer need to pkieed

The Interrupt flag (IF) is a bit in the CPU's FLA®@Syister that indicates whether the (CPU) will
instantly react to maskable hardware interruptrafs is initiated by a user application, while an
interrupt is initiated by a hardware device suchadseyboard, timer, or other similar device.
A watchdog timer is a piece of software that masitand recovers from computer problems.
Watchdog timers are commonly employed in computerautomate the repair of transient
hardware failures and to prevent malicious or érnsoftware from interfering with system

function.
Hardware interrupts are classified into two types

o Maskable Interrupts —those which can be disabled or ignored by theaprocessor.
These interrupts are either edge-triggered or {eiggered, so they can be disabled. A
level-triggered interrupt is requested by maintagnihe interrupt signal at its specified
active logic level (high or low). An edge-triggenedierrupt is one that is triggered by a
change in the level of the interrupt line, eithelabing edge (from high to low) or a
rising edge (from low to high). INTR, RST 7.5, R®I5, RST 5.5 are maskable
interrupts in 8085 microprocessor. Processors teawderrupt mask register that allows
enabling and disabling of hardware interrupts. Ewgnal has a bit placed in the mask
register. If this bit is set, an interrupt is ereab& disabled when a bit is not set, or vice
versa. Signals that interrupt the processors thirahgse masks are referred to as

masked interrupts.

o Non-maskable Interrupts (NMI) — Non-Maskable Interrupts are those which cannot
be disabled or ignored by microprocessor. TRAP isoa-maskable interrupt. It
consists of both level as well as edge triggerind & used in critical power failure
conditions. The NMiIs are the highest priority aii®és that need to be processed

27



CIT315 OPERATING SYSTEM

immediately and under any situation, such as adimeignal generated from a

watchdog timer.

Software Interrupts

The processor itself requests a software inteafipt executing certain instructions or if partaoul
conditions are met. These can be a specific insdruthat triggers an interrupt such as subroutine
calls and can be triggered unexpectedly becausegfam execution errors, known as exceptions
or traps. They are — RST 0, RST 1, RST 2, RST 3, RRST 5, RST 6, RST 7.

3.3 Interrupt Handler

The job of the interrupt handler is to service tlavice and stop it from interrupting. Once the
handler returns, the CPU resumes what it was ddbiefpre the interrupt occurred.When
microprocessor receives multiple interrupt requsstailtaneously, it will execute the interrupt

service request (ISR) according to the priorityref interrupts.
Instruction for Interrupts —

1. Enable Interrupt (EI) — The interrupt enable flip-flop is set and alleirupts are
enabled following the execution of next instructifmilowed by EIl. No flags are
affected. After a system reset, the interrupt em8lp-flop is reset, thus disabling the

interrupts. This instruction is necessary to endideinterrupts again (except TRAP).

2. Disable Interrupt (DI) — This instruction is used to reset the value radlde flip-

flop hence disabling all the interrupts. No flags affected by this instruction.

3. Set Interrupt Mask (SIM) — It is used to implement the hardware interr(®ST
7.5, RST 6.5, RST 5.5) by setting various bitsaiorf masks or generate output data
via the Serial Output Data (SOD) line. First thejueed value is loaded in
accumulator then SIM will take the bit pattern fram

4. Read Interrupt Mask (RIM) — This instruction is used to read the statushef t
hardware interrupts (RST 7.5, RST 6.5, RST 5.9phying into the A register a byte

28



CIT315 OPERATING SYSTEM

which defines the condition of the mask bits foe tinterrupts. It also reads the

condition of SID (Serial Input Data) bit on the maprocessor.

Three main classes of interrupts:
I/O interrupts

An 1/O device requires attention; the correspondimgrrupt handler must query the device to
determine the proper course of action. We covey type of interrupt in the later section "I/O
Interrupt Handling.”

Timer interrupts

Some timer, either a local APIC (Advanced Programimdnterrupt Controller) timer or an
external timer, has issued an interrupt; this kifidnterrupt tells the kernel that a fixed-time
interval has elapsed. These interrupts are hamdéetly as 1/0O interrupts.

Interprocessor interrupts

A CPU issued an interrupt to another CPU of a rprdttessor system.

I/O Interrupt Handling

In general, an I/O interrupt handler must be fléx#gnough to service several devices at the same
time. In the PCI bus architecture, for instanceesal devices may share the same IRQ (interrupt
request) line. This means that the interrupt vealone does not tell the whole story. In the
example shown in Table 4-3, the same vector 483gyaed to the USB port and to the sound card.
However, some hardware devices found in older P&itctures (such as Instruction Set

Architecture ISA) do not reliably operate if th&RQ line is shared with other devices.

Interrupt handler flexibility is achieved in twostinct ways, as discussed in the following list.

29



CIT315 OPERATING SYSTEM

RQ sharing

The interrupt handler executes several interruptice routines (ISRs). Each ISR is a
function related to a single device sharing the IR@. Because it is not possible to know
in advance which particular device issued the IB&gh ISR is executed to verify whether
its device needs attention; if so, the ISR perfaaihthe operations that need to be executed

when the device raises an interrupt.

IRQ dynamic allocation

An IRQ line is associated with a device driverls tast possible moment; for instance,
the IRQ line of the floppy device is allocated omiaen a user accesses the floppy disk
device. In this way, the same IRQ vector may bel iseseveral hardware devices even if
they cannot share the IRQ line; of course, theware devices cannot be used at the same

time.

Not all actions to be performed when an interruptuss have the same urgency. In fact, the

interrupt handler itself is not a suitable place dd kind of actions. Long noncritical operations

should be deferred, because while an interruptleargdrunning, the signals on the corresponding

IRQ line are temporarily ignored. Most importarite tprocess on behalf of which an interrupt

hand

ler is executed must always stay in the TASKNRUNG state, or a system freeze can occur.

Therefore, interrupt handlers cannot perform angkihg procedure such as an 1/O disk operation.

Regardless of the kind of circuit that caused ttterrupt, all I/O interrupt handlers perform the

same four basic actions:

Save the IRQ value and the register’s contentfiernKernel Mode stack.

Send an acknowledgment to the PIC that is servitiadRQ line, thus allowing it to issue

further interrupts.

Execute the interrupt service routines (ISRs) dased with all the devices that share the

IRQ.

iv. Terminate by jumping to the ret_from_intr() address

30



CIT315 OPERATING SYSTEM
Interrupt Handler Responsibilities

The interrupt handler has a set of responsibiltbgserform. Some are required by the framework,

and some are required by the device. All interhgtdlers are required to do the following:
o Determine if the device is interrupting and possigject the interrupt.

The interrupt handler must first examine the deacd determine if it has issued the
interrupt. If it has not, the handler must retuIDINTR_UNCLAIMED. This step
allows the implementation of device polling: itl$ahe system whether this device, among
a number of devices at the given interrupt pridetyel, has issued the interrupt.

e Inform the device that it is being serviced.

This is a device-specific operation, but it is regd for the majority of devices. For
example, SBus devices are required to interrupt the driver tells them to stop. This

guarantees that all SBus devices interruptingeastme priority level will be serviced.
o Perform any I/O request-related processing.

Devices interrupt for different reasons, such asdfer done or transfer error. This step
may involve using data access functions to readdthece's data buffer, examine the
device's error register, and set the status field data structure accordingly. Interrupt

dispatching and processing are relatively time aomsg.
« Do any additional processing that could preventlzranterrupt.
For example, read the next item of data from thecde

e Return DDI_INTR_CLAIMED.

I!I
S
Discussion

Explain interrupt received by the OS as a resufiagfer been empty from the printer tray

31



CIT315 OPERATING SYSTEM

4.0 Self-Assessment/Exercises
1). Why interrupts are used?

These are used to get the attention of the CP@rfonmn services requested by either hardware or

software.

2). What is NMI?

NMI is a non-maskable interrupt, that cannot beorgd or disabled by the processor

3). What is the function of interrupt acknowledge ine?

The processor sends a signal to the devices imalcttat it is ready to receive interrupts.
4). Describe hardware interrupt. Give examples

It is generated by an external device or hardwsueh as keyboard keys or mouse movement
invokes hardware interrupts

5). Describe software interrupt.

It is defined as a special instruction that invokesinterrupt such as subroutine calls. Software

interrupts can be triggered unexpectedly becaupeogfram execution errors
6). Which interrupt has the highest priority?
« Non-maskable edge and level triggered
e TRAP has the highest priority
7). Give some uses of interrupt
e Respond quickly to time-sensitive or real-time dgen
o Data transfer to and from peripheral devices
e Responds to high-priority tasks such as power-dsigmals, traps, and watchdog timers

« Indicates abnormal events of CPU

32



CIT315 OPERATING SYSTEM

19

An important property of interrupts is that theyndae masked, i.e., temporarily blocked. If an

5.0 Conclusion

interrupt occurs while it is masked, the interriqolication remains pending; once it is unmasked,
the processor is interrupted. How interrupts aresked is architecture-dependent, but two
approaches are common. One approach is that a &wrdegister implements a bit vector where
each bit represents a class of interrupts. If &quaar bit is set, then the corresponding class of
interrupts is masked. Thus the kernel masks inpsrby setting bits in the register. When an
interrupt does occur, the corresponding mask Isieisn the register and cleared when the handler

returns — further occurrences of that class ofrinfgs are masked while the handler is running.

L1

When an interrupt occurs, the processor puts dseleurrent context (that of a thread or another

6.0 Summary

interrupt) and switches to an interrupt contextewthe interrupt handler is finished, the processor
generally resumes the original context. Interrupttexts require stacks; which stack is used?
There are a number of possibilities: we could @tea new stack each time an interrupt occurs,
we could have one stack that is shared by allnmperhandlers, or the interrupt handler could

borrow a stack from the thread it is interrupting.

33



CIT315 OPERATING SYSTEM

ey

o 7.0 Further Studies/References

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(ld. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)0Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (2015Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

Interrupts - GeeksforGeek&022, January 13). https://www.geeksforgeeké&raragrupts/

Types of Interrupts | How to Handle Interrupts? nterrupt Latency (2015, August 20).
https://www.electronicshub.org/types-of-interruptsd-how-to-handle-interrupts/

What is an Interrupt Handler? (n.d.). Retrieved May 1, 2022, from
https://www3.nd.edu/~lemmon/courses/ee224/web-mamela-manual/lab7/node5.html

34



CIT315 OPERATING SYSTEM

Module 2 Concurrency — Multithreading

In computer systems many things must go on atdaheedime; that is, they must bencurrent.
Even in systems with just one processor, execusigenerally multiplexed, providing at least the
illusion that many things are happening at onceart particular moment there may be a number
of running programs, a disk drive that has complete operation and requires service, packets
that have just arrived from the network and alspie service, characters that have been typed
at the keyboard, etc. The operating system musdeliprocessor time among the programs and
arrange so that they all make progress in theici@n. And while all this is going on, it must
also handle all the other input/output activitiexd eother events requiring attention as well.
Concurrent processing is a computing model in wilitiple processors execute instructions
simultaneously for better performance. Tasks as&dir down into subtasks that are then assigned
to separate processors to perform simultaneousigead of sequentially as they would have to be
carried out by a single processor. Concurrent @ging is sometimes said to be synonymous with

parallel processing.

A thread is a basic unit of CPU utilization; it cprises a thread ID, a program counter, a register
set, and a stack. It shares with other threadsgelg to the same process its code section, data
section, and other operating-system resources,aslopen files and signals. A traditional process
has a single thread of control. If a process hdsipteithreads of control, it can perform more than

one task at a time.

This chapter covers multithreaded programming. diseussion here not only goes through the
basics of using concurrency in user-level progrdyasalso introduces a number of concepts that

are important in the operating system.
Unit 1: Threads& Multithreading
Unit 2: Types of Threads

Unit 3: Threads Data Structure and Lifecycle

35



CIT315 OPERATING SYSTEM

Unit 1 Threads

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 POSIX Thread
3.2 Multithreading Model
3.3 Thread Creation
3.4 Threads Termination
3.5 Cases/Examples
4.0 Self-Assessment Exercises
5.0 Conclusion

6.0Summary

7.0References/Further Reading

36



CIT315 OPERATING SYSTEM

@1.0 Introduction

In computer science, a thread of execution is thallest sequence of programmed instructions
that can be managed independently by an operagstgra scheduler. A thread is a light-weight
process. The implementation of threads and prosedgiers from one operating system to
another, but in most cases, a thread is contairsédid a process. Multiple threads can exist within
the same process and share resources such as mesmiteydifferent processes do not share these

resources.

Process switching overhead has two componentsnipatses challenges on multitasking of the

processor

e Execution related overhead: The CPU state of thaing process has to be saved and the
CPU state of the new process has to be loade@ iG@HU. This overhead is unavoidable.

e Resource-use related overhead: The process caisexhas to be switched. It involves
switching of the information about resources alteddo the process, such as memory and
files, and interaction of the process with othergaisses. The large size of this information

adds to the process switching overhead.

This distinction has led to the development, in ynaperating systems, of a construct known as
the thread. To distinguish the two characteristtos,unit of dispatching is usually referred taas
thread or lightweight process, while the unit odaerce ownership is usually referred to as a

process or task.

Threads
Thread
|
Pr
e q " Tiwead 3 — = 1_ --h--‘j:- S L= Thread 1
— 142 9 X%
= ‘;} 5 Process ./ :
g : : g):;_ Thread 1I's — \ H E H
v b Stack
i . K_rmel
N {(Operanng system)
Figure 2.1(a): Threads intra-process Figutéd:AMultiple Thread Structure

37



CIT315 OPERATING SYSTEM

Threads represent the software approach to impggearformance of O/S by reducing the
overhead of process switching. The main charatiesisf threads comprise of thread ID, a
program counter, a register set and a stuck. &digction is achieved by having a group of
related threads belonging to the same process larthg its code section, data section and

operating system resources such as memory anddiksecute concurrently.

In a thread-based systems, thread takes over ldhefrprocess as the smallest individual unit
of scheduling. In such a system, the process ORs@wyes as an environment for execution
of threads.

U@ 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, the students will be atde

1. Explain the concepts of thread
2. Differentiate between thread and process

3. Write simple thread creation code/program instongi

38



CIT315 OPERATING SYSTEM

3.0 Main Content
3.1 POSIX Thread

The ANSI/IEEE Portable Operating System Interfae©%$I1X) standard defines the pthreads
application program interface for use by C languaggrams. Popularly called POSIX threads.
The threads package it defines is called Pthreddst UNIX systems support it. The standard

defines over 60 function calls.

All Pthreads have certain properties. Each one has an idemi#iset of registers (including the
program counter), and a set of attributes, whielstwred in a structure. The attributes include the
stack size, scheduling parameters, and other nemded to use the thread. A new thread is created
using thepthreadcreate call. The thread identifier of the newlgated thread is returned as the

function value.

When a thread has finished the work it has beagraess, it can terminate by callipghread_exit
This call stops the thread and releases its s@it&n a thread needs to wait for another thread to
finish its work and exit before continuing. Thedhd that is waiting callsthread_jointo wait for

a specific other thread to terminate. The threatifler of the thread to wait for is given as a

parameter.

Sometimes it happens that a thread is not logiddtigked, but feels that it has run long enough
and wants to give another thread a chance to tuean accomplish this goal by calling
pthread_yield There is no such call for processes becausesthargtion there is that processes
are fiercely competitive and each wants all the GiRle it can get. However, since the threads of
a process are working together and their codevariably written by the same programmer,

sometimes the programmer wants them to give edudr another chance.

Other two thread calls deal with attributd®thread attr_init creates the attribute structure
associated with a thread and initializes it todké&ult values. These values (such as the priority)
can be changed by manipulating fields in the attdabstructure. Finallypthread_attr_destroy
removes a thread’s attribute structure, freeingtsipnemory. It does not affect threads using it;

they continue to exist.

39



CIT315 OPERATING SYSTEM

arad by the thresd(s) =/

s F* the thresd +/

int main{int argc, char = rgw i3

pthread v eid; /+ the zhr
pthread ator.t ansr;

= dm )

derr, "nsage: a.out <integer valaed\n®};

m s éix‘-;;

- ol A i i 5 -\:}.
fax i = i3 E %o sppewy §asd
L 1

pilend arialif s

ghd

Figure 2.2: Multithreaded C Program using PthreaBIA

The C program shown in Figure 2.2 demonstratesbdsic Pthreads API for constructing a

multithreaded program that calculates the summati@nonnegative integer in a separate thread.

In a Pthreads program, separate threads begintexedua specified function. In Figure 2.2, this

is the runner() function. When this program begasingle thread of control begins in main ().

After some initialization, main() creates a secdhckad that begins control in the runner ()

function. Both threads share the global data suat'sllook more closely at this program. All
Pthreads programs must include the pthread.h hééelérhe statemergthread_ttiddeclares the
identifier for the thread we will create. Each @mlehas a set of attributes, including stack size an
scheduling information. Thathread_attr_attr declaration represents the attributes fothiead.

We set the attributes in the function qatthread_attr _init(&att). Because we did not explicitly

40



CIT315 OPERATING SYSTEM

set any attributes, we use the default attributesiged. A separate thread is created with the
pthread_create(junction call. In addition to passing the thredentifier and the attributes for the
thread, we also pass the name of the function wier@ew thread will begin execution-in this
case, theunner()function. Last, we pass the integer parametemthatprovided on the command
line, argv. At this point, the program has two #uae: the initial (or parent) thread in main() and

the summation (or child) thread performing the swatom.
3.2 Multithreading

Multithreading refers to the ability of an operatisystem to support multiple, concurrent paths of
execution within a single process. The traditiomgproach of a single thread of execution per
process, in which the concept of a thread is nobgeized, is referred to as a single-threaded

approach.

One process One process

|
|
|
|
|
|
|
|
|
|
|
|
|
One thread l Multiple threads
____________________________ N
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Multiple processes I :\1u]liple processes = Instruction trace
One thread per process ! Multiple threads per process

Figure 2.3: Threads and Processes

The two arrangements shown in the left half of FegR.3 are single-threaded approaches. MS-

DOS is an example of an operating system that stgppsingle user process and a single thread.

Other operating systems, such as some variantdlof ,\support multiple user processes but only

support one thread per process.

41



CIT315 OPERATING SYSTEM

The right half of Figure 2.3 depicts multithreadgzproaches. A Java run-time environment is an

example of a system of one process with multipleatis.

A process is divided into a number of smaller taskgch of which is called a thread.
Multithreading describes the number of threadsiwishprocess that are executed at a time. Based
on functionality, threads are divided into fouregsries:

1) One thread per process (One to one)

2) Many threads per process (One to Many)

3) Many single-threaded processes (Many to one)

4) Many kernel threads (Many to many)

1. One thread per process A simple single-threaded application has one spge of
instructions, executing from beginning to end. Tderating system kernel runs those
instructions in user mode to restrict access tailpged operations or system memory. The
process performs system calls to ask the kerrgtimrm privileged operations on its behalf.

2. Many threads per processAlternately, a program may be structured as séweracurrent
threads, each executing within the restricted sg@ltfitthe process. At any given time, a subset
of the process’s threads may be running, whilad¢iseare suspended. Any thread running in
a process can make system calls into the kerrakiolg that thread until the call returns but
allowing other threads to continue to run. Likewis#en the processor gets an I/O interrupt,
it preempts one of the running threads so the kemane run the interrupt handler; when the
handler finishes, the kernel resumes that thread.

3. Manysingle-threaded processesAs recently as twenty years ago, many operatystems
supported multiple processes but only one threagmeess. To the kernel, however, each
process looks like a thread: a separate sequeniostaictions, executing sometimes in the
kernel and sometimes at user level. For example owltiprocessor, if multiple processes
perform system calls at the same time, the keinetffect, has multiple threads executing
concurrently in kernel mode.

4. Many kernel threads. To manage complexity, shift work to the backgmumexploit
parallelism, and hide 1/O latency, the operatingtsm kernel itself can benefit from using
multiple threads. In this case, each kernel thread with the privileges of the kernel: it can

execute privileged instructions, access system mgnmand issue commands directly to I/O
42



CIT315 OPERATING SYSTEM

devices. The operating system kernel itself impleiméhe thread abstraction for its own use.
Because of the usefulness of threads, almost atlemooperating systems support both
multiple threads per process and multiple kernedatis.

Thus, all of the threads of a process share tlie atal resources of that process. They reside in
the same address space and have access to thdaam@/hen one thread alters an item of data
in memory, other threads see the results whenabesss that item. If one thread opens a file with

read privileges, other threads in the same prazasslso read from that file.

3.3 Threads Creation

A process is always created with one thread, célifledhitial thread The initial thread provides
compatibility with previous single-threaded pro@sssThe initial thread's stack is the process
stack.

Creating a thread should be a pretty straightfaw@peration: in response to some sort of

directive, a new thread is created and proceedsdoute code independently of its creator. There
are, of course, a few additional details. We magtwa pass parameters to the thread. A stack of
some size must be created to be the thread’s egraantext.

Suppose we wish to create a bunch of threads, afaghich will execute code to provide some
service. In POSIX, we do the follows as shown below

voidstart_server( ) {
pthread_tthread;

int i;

for (1=0; i<nr_of_server_threads; i++)

pthread_create (

&thread, /lthread ID
0, /ldefault attributes
server, [/Istart routine

43



CIT315 OPERATING SYSTEM

argument); /largument

}
void *server oid *arg) {
lIperform service

return (0);

A thread is created by calling pthread_createt iéturns successfully (returns 0), a new thread
has been created that is now executing indepenydehthe caller. This thread’s ID is returned
via the first parameter (an output parameter thattandard C programming style, is a pointer to
where the result should be stored). The secondnea is a pointer to an attributes structure that
defines various properties of the thread. Usualy/can get by with the default properties, which
we specify by supplying a null pointer. The thimr@ameter is the address of the routine in which
our new thread should start its execution. Thedegiment is the argument that is actually passed
to the first procedure of the threadpthread_creatdails, it returns a positive value indicating

the cause of the failure.

3.4 Threads Termination

Terminating threads has its share of subtle isssi@gll. Our threads return values: which threads
receive these values and how do they do it? Cleatlyread that expects to receive another’s
return value must wait until that thread produdeand this happens only when the other thread
terminates. Thus, we need a way for one threaddib wntil another terminates. Though a
technigue for one thread to wait for any otheraldreo terminate might seem useful, that threads
return values makes it important to be particutzowt which thread (or threads) one is waiting
for. Thus, it's important to identify a thread unély. Such identification can be a bit tricky if
identifiers can be reused. POSIX provides a rasi@ightforward construct for waiting for a
thread to terminate and retrieving its return vataread_join.

voidrlogind (ntr_in, intr_out,intl_in, intl_out) {
44



CIT315 OPERATING SYSTEM

pthread_tin_thread, out_thread,;

two_ints_tin ={r_in, |_out}, out={l_in, r_out};

pthread_create(&in_thread, 0, incoming, &in);

pthread_create(&out_thread, 0, outgoing, &out);

pthread_join(in_thread, 0);

pthread_join(out_thread, 0);

Here our thread usgrhread_jointo insure that the threads it creates terminaterbat leaves
the scope of their arguments. The first argumeiptioead_joinindicates which thread to wait
for and the second argument, if nonzero, indicatasre the return value should go. How exactly
does a thread terminate? Or, more precisely, wies d thread do to cause its own termination?

One way for a thread to terminate is simply tomefiwom its first procedure, returning a value of
type void *. An alternative approach is that a #trealpthread_exitsupplying a void * argument

that becomes the thread’s return value.

3.5 Cases/Examples

Here is a simple complete multithreaded prograrhdbmnputes the product of two matrices. Our
approach is to create one thread for each roweopthduct and have these threads compute the

necessary inner products.

#include<stdio.h>

#include<pthread.h> /* all POSIX threads declarations */
#include<string.h> [* needed to use strerror below */
#defineM 3

45



CIT315 OPERATING SYSTEM

#defineN 4

#defineP 5

int A[M][N]; /* multiplier matrix */

int B[N][P]; /* multiplicand matrix */
int C[M][P]; [* product matrix */

void *matmult(void *);
intmain() {

inti, j;
pthread_tthr[M];
interror;

/* initialize the matrices ... */

for (i=0; i<M; i++) { /* create the worker threads */
if (error = pthread_create (
&thrli],
0,
Matmult,
(void *)i)) {
fprintf(stderr, “pthread_create: %s”, strerror(ejr):
I* This is how one convert error code to usefut teé
exit(1);
}
}
for (i=0; i<M; i++) /* wait for workers to finish */

46



CIT315 OPERATING SYSTEM

pthread_join(&thr[i], 0)

/* Print the result */

return (0);

}

l!l
S
Discussion

Is a kernel interrupt handler a thread? Why?

4.0 Self-Assessment/Exercises

A MultiThreaded Hello World

#include <stdio.h>
#include "thread.h"
static void go(int n);
#define NTHREADS 10
static thread_tthreads[NTHREADS];
int main(int argc, char **argv) {
int i;
long exitValue;
for (i = 0; i< NTHREADS; i++){
thread_create(&(threads]i]),
&go, i);
}

for (i = O0; i<k NTHREADS; i++) {
a7



CIT315 OPERATING SYSTEM

exitValue = thread_join(threadsi]);
printf("Thread %d returned with %Ild\n",
i, exitValue);
}
printf("Main thread done.\n");
return O;
}
void go (int n) {
printf("Hello from thread %d\n", n);
thread_exit(100 + n); /I Not reached
}
Output
% ./threadHello
Hello from thread O
Hello from thread 1
Thread O returned 100
Hello from thread 3
Hello from thread 4
Thread 1 returned 101
Hello from thread 5
Hello from thread 2
Hello from thread 6
Hello from thread 8

Hello from thread 7

48



CIT315 OPERATING SYSTEM

Hello from thread 9

Thread 2 returned 102
Thread 3 returned 103
Thread 4 returned 104
Thread 5 returned 105
Thread 6 returned 106
Thread 7 returned 107
Thread 8 returned 108
Thread 9 returned 109

Main thread done.

Multithreaded program using the simple threads thBt prints “Hello” ten times. Also shown is

the output of one possible run of this. Refer mabhove program to answer the below questions.

1) Why might the “Hello” message from thread 2 print dter the “Hello” message for

thread 5, even though thread 2 was created beforaread 5?
Answer
Creating and scheduling threads are separate operans.

Although threads are usually scheduled in the otiigr they are created, there is no guarantee.
Further, even if thread 2 started running beforeddl 5, it might be preempted before it reaches
the printf call. Rather, the only assumption thegpammer can make is that each of the threads

runs on its own virtual processor with unpredictedppeed. Any interleaving is possible.

2) Why must the “Thread returned” message from thread2 print before the Thread

returned message from thread 5?
Answer

Since the threads run on virtual processors witprectictable speeds, the order in which the

threads finish is indeterminate. However, the ntiaiead checks for thread completion in the order
49



CIT315 OPERATING SYSTEM

they were created. It calls thread_join for thréatll only after thread_join for thread i has

returned.

3) What is the minimum and maximum number of threads hat could exist when thread

5 prints “Hello?”
Answer

When the program starts, a main thread begins mgmmiain. That thread creates NTHREADS =
10 threads. All of those could run and complet@keethread 5 prints “Hello.” Thus, the minimum
is two threadsThe maximum and thread is ©n the other hand, all 10 threads could have been

created, while 5 was the first to run. Thie maximum is 11 threads

\Vc >'/|
5.0 Conclusion

The purpose of this unit was not just to teach lyow to write a multithreaded program, but also
to introduce various important operating-systemsses. The concerns include both how threads

are implemented and how multithreaded programnsngsed within operating system.

D

Concurrency is ubiquitous not only do most smant@so servers, desktops, laptops, and tablets

6.0 Summary

have multiple cores, but users have come to expextponsive interface at all times.

Although threads are not the only possible solutmnthese issues, they are a general-purpose
technique that can be applied to a wide range nfwoency issues. In our view, multithreaded

programming is a skill that every professional pemgmer must master.
In the unit discussed,

A process is divided into a number of smaller task€h of which is called a thread. A process is

always created with one thread, called ithgal thread, whichis created by

50



CIT315 OPERATING SYSTEM

callingpthread_createEach thread within a process is identified ltgraad ID, whose datatype

is pthread_t.Many threads within a process execute at a s called Multithreading.

A thread can be waited to terminate by callmigread_join or by explicitly callingpthread_exit.

£

7.0 Further Studies/References

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(ld. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (20150Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8veks, Ltd.

CHAPTER 5 THREADS & MULTITHREADING 1. Single andtittweaded Processegn.d.).
Retrieved May 1, 2022, from https://slideplayer.¢sliide/4402210/

Silberschatz, A., Gagne, G., & Galvin, P. (n.@perating Systems Concepts: Chapter 4 - Threads
(Ninth). Retrieved May 1, 2022, from
https://www.cs.uic.edu/~jbell/CourseNotes/Operadiygtems/4_Threads.html

Threads in Operating System - javatpoin{n.d.). Retrieved May 1, 2022, from
https://www.javatpoint.com/threads-in-operatingteys

Unit 2 Types of Threads

Contents
1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

51



CIT315 OPERATING SYSTEM

3.0 Main Content
3.1 User-level Thread
3.2 Kernel-level Thread
3.3 Hybrid Thread
3.4 Cases/Examples
4.0 Self-Assessment Exercises

5.0Conclusion

6.0 Summary

7.0 References/Further Reading

@1.0 Introduction

There are two main places to implement threads: gfs&ce and the kernel. The choice is a bit
controversial, and a hybrid implementation is gdessible. We will now describe these methods,
along with their advantages and disadvantages.aflkrare implemented in different ways. The
main difference is how much the kernel and theiagppbn program know about the threads. These
differences lead to different implementations feeitead and concurrency in an application

program.
SR
\ /

Threads User Threads User
library space “P“L library space
I\ mel Kernel Kernel
space space space
RO ,\\ ORO)
(p) /
p o \

OO
& <

&

(a) Pure user-level (b) Pure kernel-level {c) Combined

~—
—~——

Figure 2.4:Threads level

52



CIT315 OPERATING SYSTEM

u@ 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will be able to

e Explain the types of threads

¢ Implement a thread at user, kernel and hybrid level

3.0 Main Content

3.1 User-level Thread
User-level threads

User level threads are implemented by a threadarfbrThe library set up the thread
implementation arrangement without using the keraedl interleaves operation of the threads in
the process. Thus, the kernel is not aware of poesef user-level threads in a process, as it sees

only the process.

Implementing Threads in User Space

The first method is to put the threads packageantin user space. The kernel knows nothing
about them. As far as the kernel is concerned,mtanaging ordinary, single-threaded processes.
The first, and most obvious, advantage is thaes-level threads package can be implemented on
an operating system that does not support thred¢i® process will be unblocked when some
activities occurred, thus resume execution of tiread library function, which will perform
scheduling and switch to the execution of the neaglyvated thread.

53



CIT315 OPERATING SYSTEM

The threads run on top of a run-time system, wisch collection of procedures that manage
threads. We have seen four of these alreatiyread_createpthread_exit pthread_join and

pthread_yield

A process uses the library functioreate-thread to create a new thread. The library function
creates a thread control block for the new thread start considering the new thread for

scheduling.

In this scheme, the library function performs ‘sdhiéeng’ and switching from one thread to
another. The kernel is not able to see the switchetween two threads in a process, it believes
that the process is continuously in operatiorhéfthread library cannot find a ready thread in the
process, it makestdock me system call. Then the kernel now blocks the prac&ghen a thread

is moved to ready state or blocked state, the nmébion needed to restart it is stored in the thread

table, exactly the same way as the kernel stofesmation about processes in the process table.

Mapping performed by
-a— threads library

-=— PCB

\_/_V’_\J
Il

Scheduler | —» I:ISelected PCB

Figure 2.5: Scheduling of User-level thread

When a thread does something that may cause @donhe blocked locally, for example, waiting
for another thread in its process to complete seword, it calls a run-time system procedure. This
procedure checks to see if the thread must benpotblocked state. If so, it stores the thread’s
registers (i.e., its own) in the thread table, kokthe table for a ready thread to run, and ddoa
the machine registers with the new thread’s saahigbg. As soon as the stack pointer and program
counter have been switched, the new thread coméfe tagain automatically. If the machine
happens to have an instruction to store all thsstexg and another one to load them all, the entire

thread switch can be done in just a handful ofirt$tons

54



CIT315 OPERATING SYSTEM

Advantages and Disadvantages of User-level Threads
Advantages:

Since thread scheduling is implemented by thrdaddy, so thread switching overhead is smaller
than the kernel-level thread. This arrangementlesaach process to use a scheduling policy that
is best suited to it. A process implementing a malti-threaded server may perform R-R
scheduling of its threads.

Disadvantages:
Managing threads without the involvement of ketmees few drawbacks such as:

1. The kernel does know the distinction between aatthend a process, so if a thread wants
to be blocked, the kernel will block its parent. &sesult, all the threads in the process
get blocked until the cause of the blocking is reetb

2. Since kernel schedules a process, and threadyliscaedule the thread within a process,
so at most one of the thread of a process is inatipa at any time. Thus, process ULT
cannot provide parallelism and concurrency provioedLTs. Thus, a serious
impairment if a thread makes a system call thatdea blocking.

3.2 Kernel-level Thread

A KLT is implemented by kernel. Hence, creation &mdnination of KLTs, and checking their
status is perfored by system calls.

When a process makegieate-threadsystem call, the kernel assigns an ID to it, diwtates a
thread control block (TCB), which contain the pemnto the PCB of the process. When an event
occurs, the kernel saves the CPU state of therupsd thread in its TCB.

55



CIT315 OPERATING SYSTEM

Pi P

PCB PCB

1
dEEs fET

Thread control
Y blocks (TCB)

Y

Select TCB
Figure 2.6: Scheduling of Kernel-level Threads

After event handling, the scheduler considers T€Bllahreads and selects a ready thread. The
dispatcher uses the PCB pointer in its TCB to chetike selected thread belongs to a different

process than the interrupted thread. If so, it sdlve context of the process to which the selected
thread belongs. It then dispatches the selectezhdhifrhe actions to save and load the process
context are not necessary, if both threads belonthé¢ same process. This feature reduces

switching overhead.
The specifics of the implementation vary dependinghe context:

Kernel threads: The simplest case is implementing threads ingideoperating system
kernel, sharing one or more physical processokerAel thread executes kernel code and
modifies kernel data structures. Almost all comriaroperating systems today support

kernel threads.

Kernel threads and single-threaded processe#\n operating system with kernel threads
might also run some single-threaded user processese processes can invoke system

calls that run concurrently with kernel threadsdeghe kernel.

Multithreaded processes using kernel threadsMlost operating systems provide a set of
library routines and system calls to allow applmas to use multiple threads within a

single user-level process. These threads execate assle and access user-level data
structures. They also make system calls into thexatimg system kernel. For that, they

need a kernel interrupt stack just like a normadjl& threaded process.

Due to the relatively greater cost of creating dedtroying threads in the kernel, some systems
take an environmentally correct approach and redyair threads. When a thread is destroyed, it

is marked as not runnable, but its kernel dataciiras are not otherwise affected. Later, when a
56



CIT315 OPERATING SYSTEM

new thread must be created, an old thread is vedet, saving some overhead. Thread recycling
is also possible for user-level threads, but stheghread-management overhead is much smaller,
there is less incentive to do this. Kernel thredasot require any new, nonblocking system calls.
In addition, if one thread in a process causega fault, the kernel can easily check to see if the
process has any other runnable threads, and iismne of them while waiting for the required
page to be brought in from the disk.

Advantages and Disadvantages of Kernel-level thread
Advantages:

A KLT is like a process except that it has sma#lerount of state information. The similarity
between process and thread is convenient for prageas, as programming for thread is same as

programming for processes.

In a multiprocessor system, KLTs provides paraltalii.e several threads belonging to same

process can be scheduled simultaneously, whicbtipassible using the ULTSs.
Disadvantages:

However, handling the threads like processes haksadvantages too. Switching between threads
is perform by the kernel, as a result of event hagdHence, it incurs the overhead of event
handling, even if the interrupted thread and thecsed thread belong to the same process. This

feature limits the saving in the switching overhead

Another possible issue is signal delegation. Asagare frequently seto processes which are
handled by non-dedicated threads. When signatsearte conflict might arise in the course of more
than one thread attempting to handle signal as#éinee time. Which thread should handle it?

3.3 Hybrid Thread

A hybrid thread model has both ULT and KLT and moetlof associating ULTs with KLTs.
Different methods of associating user and kernedlénreads provided different combination of

the low switching overhead of ULT, and high coneunay and parallelism of KLT.

57



CIT315 OPERATING SYSTEM

Following are three search methods in which thridachry creates ULTs in a process, and
associates a TCB with each ULT, and kernel crelétels and associates kernel thread control
block (KTCB) with each KLT.

Many-to-one association methodIn this method a single KLT is created in eaclcpss by the
kernel and all ULTs created by thread library agogiated with this single KLT. In this method,
ULT can be current without being parallel, threadgtshing results in low overhead and blocking

of a ULT leads to a blocking of all threads in grecess.

One-to-one method of associatiorin this method each ULT is permanently mapped anka.T.
This method provides an effect similar to KLT: thecan operate in parallel on different CPUs
of a multiprocessor system. However, switching leetthreads is performed at the kernel level

and results in high overhead. Blocking a user l&éwedad does not block other threads.

Many-to-many association method:n this method ULT can be mapped to any KLT. Bysthi
method parallelism is possible and switching issgae at kernel-level with low overhead. Also
blocking of ULT does not block other threads as/taee mapped with different KLTs. Overall

this methods requires complex implementation eg, Salari operating system.

PCB PCB

b

TCB

TCB

KTCB KTCB KTCB

(a) (b) (c)
Figure 2.6: (a) Many to one (b) One to one (c)Mamynany associations in hybrid threads
3.4 Cases/Examples

Figure 2.7 below demonstrates a uniprocessor magiamming using threads to interleave

between the processes. Three threads in two pexass interleaved on the processor. Execution

58



CIT315 OPERATING SYSTEM

passes from one thread to another either whenuttiertly running thread is blocked or when its

time slice is exhausted.

Time
/O Request Time quantum
request complete expires

Thread A (Process 1) | I ]

Thread B (Process 1) | I I |

Thread C (Process 2) Time quantum | |
expires /
Process
created

1 Blocked [ 1Ready [ 1 Running

Figure 2.7: Multithreading on a uniprocessor

!l
Discussion

Consider an unprocessed kernel that user progreapsirto using system calls. The kernel
receives and handles interrupt requests from I/dcds. Would there be any need for critical
sections within the kernel?

4.0 Self-Assessment/Exercises
1. Name three ways to switch between user mode and kel mode in a general-purpose
operating system.

Answer

The three ways to switch between user-mode andekerade in a general-purpose
operating system are in response to a systemaralhterrupt, or a signal. A system call

occurs when a user program in user-space explicalig a kernel-defined "function” so

59



CIT315 OPERATING SYSTEM

the CPU must switch into kernel-mode. An interropturs when an 1/O device on a
machine raises an interrupt to notify the CPU ofealnt. In this case kernel-mode is
necessary to allow the OS to handle the interkipally, a signal occurs when one process
wants to notify another process that some evenbh&pgened, such as that a segmentation
fault has occurred or to kill a child process. Whigis happens the OS executes the default
signal handler for this type of signal.

\P‘c:‘/|
5.0 Conclusion

Technology trends suggest that concurrent prograigmwill only increase in importance over
time. After several decades in which computer aecké were able to make individual processor
cores run faster and faster, we have reached & whare the performance of individual cores is
leveling off and where further speedups will hawedme from parallel processing.

Experiments have shown that switching between Ka&fTa process is over 10 times faster than
switching between processes, and switching betwd#ens is 100 times faster than between

processes. Kernel-level provides better parallelsich speed up in multiprocessor system.

L1

In these operating systems, a process consists afldress space and one or more threads of

6.0 Summary

control. Each thread of a process has its own pragrounter, its own register states, and its own
stack. But all the threads of a process shareahee saddress space. Hence, they also share the
same global variables. In addition, all threads gfrocess also share the same set of operating
system resources, such as open files, child presgsemaphores, signals, accounting information,
and so on.

60



CIT315 OPERATING SYSTEM

ey

o 7.0 Further Studies/References

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(ld. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)0Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (2015Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

CHAPTER 5 THREADS & MULTITHREADING 1. Single andtiMueaded Processeg¢n.d.).
Retrieved May 1, 2022, from https://slideplayer.¢sliide/4402210/

Silberschatz, A., Gagne, G., & Galvin, P. (n.@jpperating Systems Concepts: Chapter 4 -
Threads(Ninth). Retrieved May 1, 2022, from
https://www.cs.uic.edu/~jbell/CourseNotes/Operadiygtems/4_Threads.html

Threads in Operating System - javatpointd.). Retrieved May 1, 2022, from
https://www.javatpoint.com/threads-in-operatingtseys

61



CIT315 OPERATING SYSTEM

Unit 3 Threads Data Structure and Lifecycle
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Thread Control Block (TCB)
3.2 Thread States
3.3 Thread lifecycle
3.4 Cases/Examples
4.0 Self-Assessment Exercises

5.0Conclusion

6.0 Summary

7.0 References/Further Reading

62



CIT315 OPERATING SYSTEM

@1.0 Introduction

A process is divided into several light-weight psses, each light-weight process is said to be
athread. The thread has a program counter that keeps tfagkioh instruction to execute next

if the process registers hold their current workirggiables. It has a stack which contains the
executing thread history. The data structure addtris fully represented by the Thread Control
Block (TCB) while the life cycle of thread igitial state, Ready state Running state Blocked
State Sleep Dead All these will be discussed extensively in thistu

U@ 2.0 Intended Learning Outcomes (ILOS)

At the end of this unit, students will be able to

1. Demonstrate the Thread Control Block diagram
2. Explain the thread life cycle

3. Show thread states and transition

i

—-—-!

|

3.0 Main Content

3.1 Thread Control Block

Thread Control Block (TCB) is adata structurein the operating system kevhieh
contains thread-specific information needed to rgana The TCB is "the manifestation of a
thread in an operating system". The data struafitbread contains information such as:Thread

ID, Stack pointer, Program counter: CPU informatidhread priority and the Pointers

Thread ID

63



CIT315 OPERATING SYSTEM

Thread state

CPU information:
Program counter

Register contents

Thread priority

Pointer to process that created this thread

Pointer(s) to other thread(s) that were created
by this thread

Figure 2.8: Thread Control Block

e Thread ID: It is a unique identifier assigned by the Opegatdystem to the thread when
it is being created.

o Thread states:These are the states of the thread which chargydseahread progresses
through the system

e CPU information: It includes everything that the OS needs to knbaug, such as how
far the thread has progressed and what data ig lnsied.

e Thread Priority: Itindicates the weight (or priority) of the thoeaver other threads which
helps the thread scheduler to determine which theteuld be selected next from the
READY queue.

e A pointer which points to the process which triggered theation of this thread.

e A pointer which points to the thread(s) created by thisatre

3.2 Thread States

As with processes, the key states for a threaBamming, Ready, and Blocked. Generally, it does
not make sense to associate suspend states wathdthbecause such states are process-level
concepts. There are four basic thread operatiswaded with a change in thread state:

64



CIT315 OPERATING SYSTEM

» Spawn: Typically, when a new process is spawned, a thfeathat process is also spawned.
Subsequently, a thread within a process may spawther thread within the same process,
providing an instruction pointer and argumentstf@ new thread. The new thread is provided

with its own register context and stack space dadgol on the ready queue.

* Block: When a thread needs to wait for an event, it vidtk (saving its user registers, program
counter, and stack pointers). The processor maytaowto the execution of another ready thread

in the same or a different process.

» Unblock: When the event for which a thread is blocked ocdbiesthread is moved to the Ready

queue.

* Finish: When a thread completes, its register contextstacks are deallocated.

3.3 Thread lifecycle

It is useful to consider the progression of staesa thread goes from being created, to being
scheduled and de-scheduled onto and off of a psoceand then to exiting. Figure 2.9 shows the

states of a thread during its lifetime

Sl 3
gthrand visldi}

Evient Docurs Thread Waits for Event
Othyer Thread Calls Sthread_join{}
sthread_join(}

Figure 2.9: The states of thread during lifetime

INIT : Thread creation puts a thread into its INIT statel allocates and initializes
perthread data structures. Once that is done,dhaesmtion code puts the thread into the
READY state by adding the thread to the ready Tisie ready list is the set of runnable

65



CIT315 OPERATING SYSTEM

threads that are waiting their turn to use a premedn practice, the ready list is not in fact
a “list”; the operating system typically uses a engpphisticated data structure to keep

track of runnable threads, such as a priority queue

READY : A thread in the READY state is available to be but is not currently running.
Its TCB is on the ready list, and the values ofrégisters are stored in its TCB. At any
time, the scheduler can cause a thread to tran$itbon READY to RUNNING by copying

its register values from its TCB to a processcegisters.

RUNNING: A thread in the RUNNING state is running on agassor. At this time, its
register values are stored on the processor rdtaerin the TCB. A RUNNING thread can
transition to the READY state in two ways: The shiier can preempt a running thread
and move it to the READY state by:

1. saving the thread’s registers to its TCB and

2. switching the processor to run the next threacherréady list.

A running thread can voluntarily relinquish the gessor and go from RUNNING to READY by
calling yield (e.g., thread_yield in the thread-dity).

Notice that a thread can transition from READY tONMNING and back many times. Since the
operating system saves and restores the threagigees exactly, only the speed of the thread’s
execution is affected by these transitions.

WAITING: A thread in the WAITING state is waiting for so@eent. Whereas the scheduler can
move a thread in the READY state to the RUNNINGesta thread in the WAITING state cannot
run until some action by another thread moveinfiWAITING to READY.

FINISHED: A thread in the FINISHED state never runs agahe $ystem can free some or all
of its state for other uses, though it may keepeseeamnants of the thread in the FINISHED state
for a time by putting the TCB on a finished listriexample, the thread_exit call lets a thread pass
its exit value to its parent thread via thread_.j&rmentually, when a thread’s state is no longer
needed (e.g., after its exit value has been reatiéjpoin call), the system can delete and reclaim
the thread’s state.

66



CIT315 OPERATING SYSTEM

State of Location of Thread Control Block Location of
Thread (TCB) Registers

INIT Being Created TCB

READY Ready List TCB
RUNNING Running List Processor
WAITING Synchronization Variable’s Waiting List TCB
FINISHED Finished List then Deleted TCB or Deleted

Figure 3.0: State of a thread

‘!_s]
Discussion

An airline reservation system using a centralizathblase services user requests concurrently. Is

it preferable to use threads rather than procesgbss system? Give reasons for your answer.
3.4 Cases/Examples

ThethreadHello program o#.0 Self-Assessment/Exercisa Unit 2 is example of a WAITING
thread. After creating its children’s threads, thain thread must wait for them to complete, by
calling thread_join once for each child. If the @fie child thread is not yet done at the time of
the join, the main thread goes from RUNNING to WANG until the child thread exits.

While a thread waits for an event, it cannot mak@ggess; therefore, it is not useful to run it.
Rather than continuing to run the thread or stotifggTCB on the scheduler’s ready list, the TCB
is stored on the waiting list of some synchron@atvariable associated with the event. When the
required event occurs, the operating system mdwe3 €B from the synchronization variable’s
waiting list to the scheduler’s ready list, traimiing the thread from WAITING to READY.

67



CIT315 OPERATING SYSTEM

4.0 Self-Assessment/Exercises

1. What is the primary difference between a kernel-legl context switch and (address

spaces) and a user-level context switch?
Answer

The primary difference is that kernel-level contexttches involve execution of OS code. As such
it requires crossing the boundary between user-kengel-level two times. When the kernel is
switching between two different address spaceaugtratore the registers as well as the address
space. Saving the address space involves savingepoito the page tables, segment tables, and
whatever other data structures are used by thetGE¥scribe an address space. When switching
between two user-level threads only the user-\agiégisters need to be saved and the kernel need
not be entered. The overhead observed on a kexwal-¢ontext switch is much higher than that

of a user-level context switch.

2. Does spawning two user-level threads in the same drgéss space guarantee that the
threads will run in parallel on a 2-CPU multiprocessor? If not, why?

Answer

No, the two user-level threads may run on top efdhme kernel thread. There are, in fact, many
reasons why two user-level threads may not ruraralfel on a 2-CPU MP. First is that there may
be many other processes running on the MP, so thare other CPU available to execute the
threads in parallel. Second is that both threadslmaexecuted on the same CPU because the OS
does not provide an efficient load balancer to maitleer thread to a vacant CPU. Third is that the

programmer may limit the CPUs on which each thmeag execute.

‘Vc>'/|
5.0 Conclusion

A computer user and the operating system haverdiftesiews of execution of programs. The user
is concerned with achieving execution of a progiana sequential or concurrent manner as
desired, whereas the OS is concerned with allotaifaesources to programs and servicing of
several programs simultaneously, so that a suitasiebination of efficient use and user service

may be obtained. In this chapter, we discussedwamspects of these two views of execution of

68



CIT315 OPERATING SYSTEM

programs. Execution of a program can be speedetrapgh either parallelism or concurrency.
Parallelism implies that several activities argpmogress within the program at the same time.
Concurrency is an illusion of parallelism, actiegtithat appear to be parallel, but may not be
actually so. We have now understood fully the cpteef threads, multiprogramming, how

threads are created and terminated, types of thi@adi the lifecycle of threads.

L1

Although threads are not the only possible solutmnthese issues, they are a general-purpose

6.0 Summary

technique that can be applied to a wide range ntwwency issues. In our view, multithreaded

programming is a skill that every professional pamgmer must master.
In this unit, we have described that;

TCB is the data structure of a thread containifgrmation like thread 1D, Computer information,
thread priority and pointer. States of a threadyeafinom Init, ready, running, waiting, block, and

finished.

69



CIT315 OPERATING SYSTEM

ey

7.0 Further Studies/References

Thomas, A., & Dahlin, M. (2015Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concets. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(id. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

CHAPTER 5 THREADS & MULTITHREADING 1. Single andtittweaded Processegn.d.).
Retrieved May 1, 2022, from https://slideplayer.¢sliide/4402210/

Silberschatz, A., Gagne, G., & Galvin, P. (n.@perating Systems Concepts: Chapter 4 - Threads
(Ninth). Retrieved May 1, 2022, from
https://www.cs.uic.edu/~jbell/CourseNotes/Operadiygtems/4_Threads.html

Threads in Operating System - javatpoin{n.d.). Retrieved May 1, 2022, from
https://www.javatpoint.com/threads-in-operatingteys

70



CIT315 OPERATING SYSTEM

Module Process Synchronization
Introduction of Module

Interacting processes are concurrent processesliaat data or coordinate their activities with
respect to one anothebata accesssynchronization ensures that shared data do rsst lo
consistency when they are updated by interactioggsses. It is implemented by ensuring that
processes access shared data only in a mutuallysasxe mannerControl synchronization

ensures that interacting processes perform théwrecin a desired order. Together, these two

kinds of synchronization make up what we refergpracesssynchronization.

In this module, we will introduceprocess synchratian issues and their solutions. Issues such as
Race condition in processes, deadlocks; and sokisach as mutual exclusion in critical regions,

event handling, semaphores and monitors

Unit 1: Race condition, Critical Region and Mut&aiclusion
Unit 2: Deadlocks

Unit 3: Synchronization

Unit 4:Synchronization Problems

71



CIT315 OPERATING SYSTEM

Unit 1 Race Condition and Critical Region
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Race Condition
3.2 Critical Region
3.3Cases/Examples
4.0 Self-Assessment Exercises

5.0Conclusion

6.0 Summary

7.0 References/Further Reading

72



CIT315 OPERATING SYSTEM

@1.0 Introduction

The nature of interaction between processes whewtite setof one overlaps theead_setof
another is obvious. The first process may set #heevof a variable which the other process may
read. The situation when thwerite_setsof two processes overlap is refdrto asinteracting
processesThe manner in which the processes perform thetevaperations can lead to incorrect
results, so the processes must cooperate to avclidsguations. Processes that do not interact are

said to be independent processes; they can exieeatg in parallel.

U@ 2.0 Intended Learning Outcomes (ILOS)

At the end of this unit, students will able to

e Define race condition
e Explain how race condition occur

e Resolve race condition

=——=1 3.0 Main Content
3.1 Race Condition

An application may consist of a set of processemist) some data sayls’. Data access
synchronization involves blocking and activationtloése processes such that they can share the

data‘'ds’ in a correct manner.

The need for data access synchronization arisesubecaccesses to shared data in an arbitrary

manner may lead to wrong results in the processgsray also affect consistency of data.

To see this problem, consider processes Pi anldaPpupdate the value of a shared data item ds

through operations ai and aj, respectively

73



CIT315 OPERATING SYSTEM

Operation ai : ds :=ds + 10;
Operation gj : ds :=ds + 5;

Let (dshitai be the initial value of ds, and let process PiHeefirst one to perform its operation.
The value of ds after operation ai will be (glg) + 10. If process Pj performs operation aj now,
the resulting value of ds will be (ds) = ((dShitar + 10) + 5, i.e., (ds)initial + 15. If the processe
perform their operations in the reverse orderniw value of ds would be identical. If processesPi
andPj perform their operations concurrently, we loexpect the result to be (ds)initial+15;

however, it is not guaranteed to be so. This sdnas called aace condition

A race condition on a share data ds is a situatioim which the value of ds resulting from the

execution of two operations may be differenti.e
O dg)) = 1, (f;(ds))

the result of the two operations will be corretcgrie of them operates on the value, resulting from
the other operation. But will be wrong, if bothaid aj operates on old value of ds. This can
happen if one process is engaged in performingptit-add-store sequence but the other process

has performed the load instruction before this eage is completed.

A program containing a race condition may produmeect or incorrect results depending on the
order in which instructions of its processes arcated. This feature complicates both testing and

debugging of concurrent programs, so race conditshiould be prevented.

Data Access Synchronization

Race conditions are prevented if we ensure thatatipas ai and aj do not execute concurrently,
that is, only one of the operations can acces®dtdata ds at any time. This requirement is called
mutual exclusion.When mutual exclusion is ensured, we can be &atethe result of executing
operations ai and aj would be either fi(fj(ds)) fifi(ds)). Data access synchronization is
coordination of processes to implement mutual esicluover shared data. A technique of data
access synchronization is used to delay a probessvishes to access ds if another process is
currently accessing ds, and to resume its operatien the other process finishes using ds. This

will be discussed further in unit 3.
74



CIT315 OPERATING SYSTEM

We identify this set of processes by following tiedinition stated below for each pair of processes.
We use the notatiompdate-set i for this purpose

Update-seti is a set of data items updated by peoPe, i.e., set of data items whose values are
read, modified and written back by process Pi.

Definition of processes containing Race Condition

A race condition exist in processes Pi and Pj cdgplication if
Update_set nUpdate_set, = ¢

The following method can be used to prevent race nditions in an application program:
1) For every pair of processes that share some daakavhether a race condition exists.

2) If so, ensure that processes access shared datautually exclusive manner.

3.2 Critical Regions

The key to preventing trouble here and in manyrattiaations involving shared memory, shared
files, and shared everything else, is to find samag to prohibit more than one process from
reading and writing the shared data at the same. imother words, what we neednsitual
exclusion,some way of making sure that if one process isgugishared variable or file, the other
processes will be excluded from doing the samegthincritical section for a data item ds is a
section of code that is designed so that it cabha@xecuted concurrently either with itself or with

other critical section(s) for ds

If some process Piis executing a critical sediwonls, another process wishing to execute a atitic
section for ds will have to wait until Pi finishegecuting its critical section. Thus, a criticattsen

for a data item ds is a mutual exclusion regiorhwéspect to accesses to ds. We mark a critical
section in a segment of code by a dashed rectangoXausually given notation as CS

The critical-section problem is to design a protdbat the processes can use to cooperate. Each
process must request permission to enter its @rgiection. The section of code implementing this

request is thentry section. The critical section may be followed byt section. The remaining

75



CIT315 OPERATING SYSTEM

code is theemainder section.The general structure of a typical process Phas in figure 3.0

below.

g - - %
étsiry spehon

critical sechion
et section

rerringder seciion

} while (TRUE);

Figure 3.1: Typical process Pi running in critisakttion

A solution to the critical-section problem mustisigtthe following three properties:

1. Mutual exclusion. If process Pi is executing in its critical sentithen no other processes can

be executing in their critical sections.

2.Progress If no process is executing in its critical sestamnd some processes wish to enter their
critical sections, then only those processes tfeanhat executing in their remainder sections can
participate in deciding which will enter its crigicsection next, and this selection cannot be

postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the numberiraks that other processes
are allowed to enter their critical sections a@iggrocess has made a request to enter its critical

section and before that request is granted.
Properties of a Critical Section Implementation

Refer to the above three properties. When sevesakpses wish to use critical sections for a data
item ds, a critical section implementation mustueaghat it grants entry into a critical section in

accordance with the notions of correctness anddas to all processes. There are three essential
properties that a critical section implementatiomsinpossess to satisfy these requirements. The

mutual exclusionproperty guarantees that two or more processésatilbe in critical sections
76



CIT315 OPERATING SYSTEM

for ds simultaneously. It ensures correctness ef ithplementation. The second and third
properties together guarantee that no process ngdhbi enter a critical section will be delayed
indefinitely, i.e., starvation will not occur.Therogress property ensures that if some processes
are interested in entering critical sections falaga item ds, one of them will be granted entry if
no process is currently inside any critical sectmmds—that is, use of a CS cannot be “reserved”
for a process that is not interested in enteriegtecal section at present. However, this property
alone cannot prevent starvation because a prociggtg never gain entry to a CS if the critical
section implementation always favors other proce$se entry to the CS. Thieounded wait
property ensures that this does not happen byifighrthe number of times other processes can
gain entry to a critical section ahead of a reqnggtrocess Pi. Thus, the progress and bounded
wait properties ensure that every requesting psoegl$ gain entry to a critical section in finite
time; however, these properties do not guarantgeeeific limit to the delay in gaining entry to a
Cs.

77



CIT315 OPERATING SYSTEM

3.3 Cases/Examples

Race Condition in an Airline Reservation Application

Code of processes Corresponding machine instructions
S if nextsearno < capaciry 5;-1 Load nextseatno in reg,
512 If reg, > capacity goto 5.1
then
Sa allotedno:=nexiseatno; 53:.1  Move nexaseamno o allotedno
Ss nextseatno: =nextseamao+ 541 Load nextseatno in reg,
532 Add |l w reg,
533 Store reg, in nextseamno
534 GowS,..l
else
Sa display ~sorry, no seats 54.1 Dasplay “sorry, - - -7
available™
Ss .. Ss.1

Some execution cases

S TN ETEN TN EFIN 7S TR T
, Al

Cose2 TN TN PN T

S} £ £7e3 £ B

Time —
Exccution of instructions by processes

Figure 3.2: Airline reservation deadlock processes

The left column in the upper half of Figure abotiewss the code used by processes in an airline
reservation application. The processes use idéctcke, hence ai and aj, the operations performed
by processes Pi and Pj, are identical. Each oktbegrations examines the value of nextseatno
and updates it by 1 if a seat is available. Thatrgplumn of Figure above show the machine
instructions corresponding to the code. Statem8rdd®responds to three instructions S3.1, S3.2
and S3.3 that form a load-add-store sequence wliet®ns for updating the value of nextseatno.
The lower half of the Figure is a timing diagranm tbe applications. It shows three possible
sequences in which processesPi andPj could exéitenstructions when nextseatno = 200 and
capacity = 200. In case 1, process Pi executei$ sketement that compares values of nextseatno
with capacity and proceeds to execute instruct®hd, S3.1, S3.2 and S3.3 that allocate a seat
and increment nextseatno. When process Pj exeth#e$ statement, it finds that no seats are
available so it does not allocate a seat. In capeo2ess Pi executes the if statement and firats th
a seat can be allocated. However, it gets preenty@idle it can execute instruction S2.1. Process

Pj now executes the if statement and finds th&ad is available. It allocates a seat by executing
78



CIT315 OPERATING SYSTEM

instructions S2.1, S3.1, S3.2 and S3.3 and exéstseatno is now 201. When process Pi is
resumed, it proceeds to execute instruction SZhichnallocates a seat. Thus, seats are allocated
to both requests. This is a race condition becalmsn nextseatno = 200, only one seat should be
allocated. In case 3, process Pi gets preemptediafoads 200 in regj through instruction S3.1.

Now, again both Pi and Pj allocate a seat eacltghwikia race condition.

|!|
Discussion

How could the race condition obtained in the a&lineservation system in the above

Cases/Example be resolved? Any Idea

4.0 Self-Assessment/Exercises

1. Can a mutual exclusion algorithm be based on as®iptions on the relative speed of
processes, i.e. that some processes may be "fasténan the others in executing the same

section of code?
Answer

No, mutual exclusion algorithms cannot be based swiraptions about the relative speed of
processes. There are MANY factors that determiaesiecution time of a given section of code,
all of which would affect the relative speed of ggeses. A process that is 10x faster through a

section of code one time, may be 10x slower thé tee.

N a
19
5.0 Conclusion
The problem of avoiding race conditions can alsddomulated in an abstract way. Part of the
time, a process is busy doing internal computatimmd other things that do not lead to race
conditions. However, sometimes a process has esachared memory or files, or do other critical

things that can lead to races. That part of thgnam where the shared memory is accessed is
79



CIT315 OPERATING SYSTEM

called the critical region or critical sectionwe could arrange matters such that no two processes

were ever in their critical regions at the sameetime could avoid races.

L1

Processes frequently need to communicate with giteresses. When a user process wants to

6.0 Summary

read from a file, it must tell the file process whavants. Then the file process has to tell tis& d
process to read the required block. We have segrattace condition, which is referred to as two
processes trying to write to the file at the saimmet can occur if propeneasure@re not put in
place. Critical regions using the mutual exclugiooperty have come to the rescue, making sure
no two processes access shared memory at the saméyt putting one of the processes in a
waiting state until CPU resources are completdgased by the other process.This had solved a

lot of problem in the airline reservation system.

80



CIT315 OPERATING SYSTEM

ey

7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@erating System Concefts. Weisman
(ed.); 8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(ld. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (20150Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8veks, Ltd.

kartik. (n.d.). Race Condition in OS Retrieved May 1, 2022, from
https://practice.geeksforgeeks.org/problems/racelition-in-os

Silberschatz, A., Galvin, P. B., & Gagne, G. (202perating System Concepts.lirfiormation
and Software Technology (Vol. 32, Issue 8). Wiley.
http://linkinghub.elsevier.com/retrieve/pii/09502B090158N%0Ahttp://0s-
book.com/%0Ahttps://drive.google.com/open?id=1mMQNsW7mDHEQzT|BtQgvU_k
AR-PcQ

What Is A Critical Region In Computer Science? eSdssWay.canfn.d.). Retrieved May 1,
2022, from https://thesassway.com/what-is-a-ciitiegion-in-computer-science/

81



CIT315 OPERATING SYSTEM

Unit 2 Deadlock
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Deadlock Concept
3.2 Deadlock Detection
3.3 Deadlock Avoidance
3.4 Deadlock Prevention
3.5 Cases/Examples
4.0 Self-Assessment Exercises

6.0Conclusion

7.0Summary

7.0 References/Further Reading

82



CIT315 OPERATING SYSTEM

@1.0 Introduction

In real life, a deadlock arises when two persoag or phone calls from one another, or when
persons walking a narrow staircase in oppositectimes meet face to face. A deadlock is
characterized by the fact that persons wait indefinfor one another to perform specific actions;

these actions cannot occur.

Deadlocks arise in process synchronization wheegsses wait for each other’s signals, or in
resource sharing when they wait for other procedseselease resources that they need.
Deadlocked processes remain blocked indefinitelficlv adversely affects user service,

throughput and resource efficiency.
The objectives of this unit are

e To develop a description of deadlocks, which préwsts of concurrent processes from
completing their tasks.

e To present a number of different methods for prémagnor avoiding deadlocks in a

@

At the end of this unit, the student wik able to

computer system.

2.0 Intended Learning Outcomes (ILOSs)

e Describe the concept of deadlock

e Write a program code that avoid deadlock

3.0 Main Content
3.1 Deadlock Concept

Deadlock is the state of permanent blocking oftaoprocesses each of which is waiting for an

event that only another process in the set carec#listhe processes in the set block permanently

83



CIT315 OPERATING SYSTEM

because all the processes are waiting and heneeafidimem will ever cause any of the events that

could wake up any of the other members of the set.

A deadlock situation can be best explained withhiglp of an example. Suppose that a system has
two tape drives Tl and T2 and the resource allooatirategy is such that a requested resource is
immediately allocated to the requester if the reseus free. Also suppose that two concurrent
processes Pl and P2 make requests for the tapesdnithe following order:

1. P1requests for one tape drive and the systemeédiod 1 to it.

2. P2 requests for one tape drive and the systemaddled 2 to it.

3. P1 requests for one more tape drive and entersitamgvatate because no tape drive is
presently available.

4. P2 requests for one more tape drive and it alsereatwaiting state because no tape drive
is presently available.

From now on, P1 and P2 will wait for each otheriimitely, since PI will not release T1 until it
gets T2 to carry out its designated task, thatas,until P2 has released T2, whereas P2 will not
release T2 until it gets T1. Therefore, the twocpsses are in a state of deadlock. Note that the
requests made by the two processes are totally begause each is requesting for only two tape
drives, which is the total number of tapes drivesilable in the system. However, the deadlock
problem occurs because the total requests of bbottepses exceed the total number of units for
the tape drive and the resource allocation poicguich that it immediately allocates a resource on
request if the resource is free.

The deadlock illustrated above is called a resodeagdlock. Other kinds of deadlock can also
arise in an OS. A synchronization deadlock occursmthe awaited events take the form of signals
between processes. For example, if a process Riedeto perform an action ai only after process
Pj performs action aj, and process Pj decides timqme action aj only after Pi performs ai, both
processes get blocked until the other process seadsgnal. An OS is primarily concerned with
resource deadlocks because allocation of resois@s OS responsibility. The other two forms
of deadlock are seldom handled by an OS; it expests processes to handle such deadlocks

themselves.

84



CIT315

Conditions for a Resource Deadlock

OPERATING SYSTEM

This condition is essential because waits may adhdefinite if a blocked process is permitted to

withdraw a resource request and continue its ojperdtiowever, it is not stated explicitly in the

literature, because many operating systems typidaipose the no-withdrawal condition on

resource requests.

1. Non-shareable resources cannot be shared; a pnoeeds exclusive access to a

resource.

2. No Preemption: A resource cannot be preempted tmo@rprocess and allocated to

another process.

3. A Hold-and-wait process continues to hold the reses allocated to it while

waiting for other resources.

4. A circular wait chain of hold-and-wait conditioesists in the system; e.g., process

Pi waits for Pj, Pj waits for Pk, and Pk waits Rir

Table 1: Conditions for Resource Deadlock

Condition

Explanation

Non-shareable resources

No preemption

Hold-and-wait

Circular waits

Resources cannot be slaangdicess

needs exclusive access to a resource

A resource cannot be preempted fioen o

process and allocated to another process.

A process continues to hold the reses
allocated to it while waiting for other

resources.

A circular chain of hold-and-wait
conditions exists in the system; e.g.,
process Pi waits for Pj, Pj waits for Pk,
and Pk waits for Pi.

85



CIT315 OPERATING SYSTEM

3.2 Deadlock Detection

In this approach for deadlock handling, the sysierss not make any attempt to prevent deadlocks
and allows processes to request resources andittdowaach other in an uncontrolled manner.

Rather, it uses an algorithm that keeps examirliegstate of the system to determine whether a
deadlock has occurred. When a deadlock is detetiedystem takes some action to recover from
the deadlock. If a system does not employ eithégadlock-prevention or a deadlock avoidance

algorithm, then a deadlock situation may occuthla environment, the system may provide:

e An algorithm that examines the state of the sydtehetermine whether a deadlock has
occurred.

e An algorithm to recover from the deadlock

It should be noted that a detection-and-recovengise requires overhead that includes not only
the run-time costs of maintaining the necessarimétion and executing the detection algorithm

but also the potential losses inherent in recogeiiom a deadlock

A process in the blocked state is not involved oheadlock at the current moment if the request
on which it is blocked can be satisfied througleg@uence of process completion, resource release,
and resource allocation events. If each resousss ¢h the system contains a single resource unit,
this check can be made by checking for the preseih@eycle in an Resource Request Allocation
Graph (RRAG) or Wait For Graph(WFG). However, mooenplex graph-based algorithms have
to be used if resource classes may contain monedi@resource, so we instead discuss a deadlock
detection approach using the matrix model. We clieckhe presence of a deadlock in a system
by actually trying to construct fictitious but féale sequences of events whereby all blocked
processes can get the resources they have requ8sierkss in constructing such a sequence
implies the absence of a deadlock at the curremhend, and a failure to construct it implies
presence of a deadlock.

We perform the above check by simulating the oparadf a system starting with its current state.
We refer to any process that is not blocked orsauge request as a running process, i.e., we do

not differentiate between the ready and runningestdn the simulation we consider only two
86



CIT315 OPERATING SYSTEM

events— completion of a process that is not bloaked resource request, and allocation of
resource(s) to a process that is blocked on a resoaquest. It is assumed that a running process
would complete without making additional resoureguests, and that some of the resources freed
on its completion would be allocated to a blockeadcpss only if the allocation would put that
process in the running state. The simulation endemwall running processes complete. The
processes that are in the blocked state at thefeth@ simulation are those that could not obtain
the requested resources when other processes wempleted, hence these processes are
deadlocked in the current state. There is no dekdiothe current state if no blocked processes

exist when the simulation ends.
Consider the following

The allocation state of a system containing 10sufia resource class R1 and three processes P1—
P3 is as follows:

Ry Ry R,
Total
j'[ — f] 8 n.‘s..:ur..'c.s
2 4 v 3 [
> > Free
P3 - Ps L resources E
Allocated Requested

resources resources

Process P3 is in the running state because ittislacked on a resource request. All processes in
the system can complete as follows: Process P3 letespand releases 2 units of the resource

allocated to it. These units can be allocated toV#2en it completes, 6 units of the resource can

be allocated to P1. Thus, no blocked processesween the simulation ends, so a deadlock does
not exist in the system. If the requests by praee&d and P2 were for 6 and 3 units, respectively,
none of them could complete even after processeR&ged 2 resource units. These processes
would be in the blocked state when the simulatizofeel, and so they are deadlocked in the current

state of the system.

87



CIT315 OPERATING SYSTEM

Deadlock Detection Algorithm

Algorithm below performs deadlock detection. Timputs to the algorithm are two sets of
processes Blocked and Running, and a matrix mddleé@llocation state comprising the matrices
Allocated_resources, Requested_resources, and rEseeirces. The algorithm simulates
completion of a running process Pi by transferiinfjom the set Running to the set Finished
[Steps 1(a), 1(b)]. Resources allocated to Piddeato Free resources [Step 1(c)]. The algorithm
now selects a blocked process whose resource tecprede satisfied from the free resources
[Step 1(d)], and transfers it from the set Blockethe set Running. Sometime later the algorithm
simulates its completion and transfers it from Rogro Finished. The algorithm terminates when
no processes are left in the Running set. Procassesining in the set Blocked, if any, are
deadlocked. The complexity of the algorithm carmabalyzed as follows: The sets Running and
Blocked can contain up to n processes, whereheitotal number of processes in the system. The
loop of Step 1 iterates n times and Step 1(d) performs an order of n srkvin each iteration.

Hence the algorithm requires an order of n2 x rkwor

Inputs
n : Number of processes;
r : Number of resource classes;
Blocked :  set of processes:
Running 1 set of processes.
Free_resources 1 array [1..r] of integer;
Allocated_resources  :  array [l..n, 1..r] of integer;
Requested_resources @ array [1..n, 1..r] of integer,

Data structures

Finished . set of processes;

1. repeat until ser Running is empty
a. Select a process Py from set Running;
b. Delete P; from set Running and add it to set Finished;

e fork=1.r
Free_resources|k] := Free_resources[k] + Allocated_resources[i k}:
d. while ser Blocked contains a process Py such that
for k = l..r, Requested_resources|l k] < Free_resources[k]
i.fork=1.r
Free_resources|k):= Free_resources|k] — Requested_resources|l, k};
Allocated_resources|l, k] := Allocated_resources|{l, k)
+ Requested_resources{l, k)
il. Delete P, from set Blocked and add it to set Running:
2. if set Blocked is not empty then
declare processes in set Blocked to be deadlocked.

Figure 3.3: Deadlock detection algorithm

88



CIT315 OPERATING SYSTEM

3.3 Deadlock Avoidance

In deadlock avoidance, for each new request, tiséesy consider the resources currently
available, the resources currently allocated tgtioeesses and further request and releases of
each process, to decide whether the current regaesbe satisfied or must wait to avoid a

possible future deadlock.

The various algorithm differ in the amount angeyof information required. The simplest
and most useful model requires that each procedardehe maximum number of resource

classes (resource types) and their resource umétgKices) that it may need in the system.

Safe State

A state is safe, if the system can allocate ressutc each process (up to its maximum) in
some order and avoid deadlock. Formally, a syssesaid to be in safe state only if there exist
a safe sequence. A sequence of processes < P1, P2> is a safe sequence for the current
allocation state iff for each process Pi, the resesithat Pi can still request can be satisfied by

the currently available resources plus the resaunetd by all the processes Pj with Pj< Pi.

Given a prior information about the maximum numtferesources of each type that may be
requested for each process, it is possible to noetsn algorithm that ensures that the system

will never enter a deadlock state. This approadém@svn as Deadlock Avoidance.

UNSAFE

Dead lock

Figure 3.4: Safe,unsafe and deadlock of state

In this situation, if the resources that procesad®ids are not immediately available then Pi can
wait until all Pj have finished. A safe state id aaleadlock state. Conversely, a deadlock state is
89



CIT315 OPERATING SYSTEM

an unsafe state. However, not all unsafe statetem@iock. An unsafe state may lead to a deadlock
state. As long as the state is safe, the O/S aaid deadlocks while in unsafe state the O/S cannot

prevent processes from requesting resources sath tteadlock occurs.
Banker’s Algorithm

The resource allocation graph algorithm is not @pple to a resource allocation system with
multiple instances of each resource type. The dekdlvoidance scheme that we describe next is

applicable to such a system and is commonly knasMBamkers’ Algorithm.

The name was chosen because this algorithm coulddxkin a banking system to ensure that the
bank never allocates its available cash such thean no longer satisfy the needs of all its
customers. When a new process enters the systemysit declare the maximum number of

instances of each resource type that it may need.

This number may not exceed the total number ofuress in the system. When a user requests a
set of resources, the system must determine wh#theaallocation of these resources will leave
the system in safe state. If it will, the resouraesallocated, otherwise, the process must wélt un

some other process releases enough resources.

Several data structures are required to implenfenBtnker's Algorithm. These data structures
encode the state of the resource-allocation sydtetyn’ be the number of processes in the system

and ‘m’ be the number of resource types. The falhawexplain the data structures:
Available

A vector of length ‘m’ indicates the number of dahble resources of each type. If available [j] =
k, then there are ‘k’ instances of resource typesRyailable. It is a 1-dimensional array of léngt
m’.

Max
It is a 2-dimensional array (matrix) of length mxthat defines the maximum demand of each

process in a system. If Max [i, j ] = k, then pree®i may request at most ‘k’ instances of resource

type Rj.

90



CIT315 OPERATING SYSTEM

Allocation

It is also a 2-d array of length n x m that defitles number of resources of each type currently
allocated to each process. If allocation [i, j],#Hen process Pi is currently allocated 'k’ instas

of resource type R;j.
Need

It is also a 2-d array of length n x m that indesathe remaining resource need of each process. If

need [i, j] = k, then process Pi may need ‘k’ mioitances of resource type to complete its task.
Note that: need [i, j] = Max [ij] — Allocation [i, j].

These data structures vary over time in both sizevalue. We can treat each row in the matrices
allocation and need as vectors and refer tAdocation-i andNeed-irespectivelyAllocation-i
specifies the resources currently allocated togsed®i and vectdeed-ispecifies the additional

resources that process Pi may still request to tetens task.

3.4 Deadlock Prevention

This approach is based on the idea of designingyteem in such a way that deadlocks become
impossible. It differs from avoidance and detectionthat no runtime testing of potential
allocations need be performed.lt has been seen rthatial-exclusion, hold-and-wait, no-
preemption, and circular-wait are the four necgssanditions for a deadlock to occur in a system.

Therefore ensuring that none of these conditiongver satisfied, deadlocks will be impossible.

Mutual Exclusion - The mutual-exclusion condition must hold for relrarable resources. For

example, a printer cannot be simultaneously shayeseveral processes. Sharable resources, in
contrast, do not require mutually exclusive aceeskthus cannot be involved in a deadlock. Read-
only files are a good example of a sharable resoufceveral processes attempt to open a read-
only file at the same time, they can be grantedubaneous access to the file. A process never
needs to wait for a sharable resource. In gerfeyalever, we cannot prevent deadlocks by denying

the mutual-exclusion condition, because some ressuare intrinsically non-sharable.

Hold and Wait - To ensure that the hold-and-wait condition nexaaurs in the system, we must

guarantee that, whenever a process requests agesiuwoes not hold any other resources. One

91



CIT315 OPERATING SYSTEM

protocol that can be used requires each proceass|test and be allocated all its resources before
it begins execution. We can implement this providoy requiring that system calls requesting
resources for a process precede all other systisn &a alternative protocol allows a process to
request resources only when it has none. A protessrequest some resources and use them.
Before it can request any additional resources gvew it must release all the resources that it is
currently allocated.

No Preemption- The third necessary condition for deadlocksat there be no preemption of
resources that have already been allocated. Taetisat this condition does not hold, we can use
the following protocol. If a process is holding sanesources and requests another resource that
cannot be immediately allocated to it (that is,gh@cess must wait), then all resources the process
is currently holding are preempted. In other wottiese resources are implicitly released. The
preempted resources are added to the list of ress@or which the process is waiting. The process
will be restarted only when it can regain its o&baurces, as well as the new ones that it is
requesting.

Circular Wait - A circular wait can result from the hold-and-tvaiondition, which is a
consequence of the non-shareability and non-prabifitgtconditions, so it does not arise if either
of these conditions does not arise. Circular watsbe separately prevented by not allowing some
processes to wait for some resource. It can beeaetiiby applying a validity constraint to each
resource request. The validity constraint is a Baolfunction of the allocation state. It takes the
value false if the request may lead to a circulaitw the system, so such a request is rejected
right away. If the validity constraint has the \alue, the resource is allocated if it is avagabl
otherwise, the process is blocked for the resource.

Deadlock Prevention Policy
All Resources Together

This is the simplest of all deadlock preventionigiek. A process must ask for all resources it
needs in a single request; the kernel allocatesfdatiem together. This way a blocked process
does not hold any resources, so the hold-and-veaitiiion is never satisfied. Consequently,

circular waits and deadlocks cannot arise. Under fiblicy, both processes for instance must

92



CIT315 OPERATING SYSTEM

request a tape drive and a printer together. N@noeess will either hold both resources or hold
none of them, and the hold-and-wait condition wit be satisfied

Simplicity of implementation makes “all resourcemyéther” an attractive policy for small
operating systems. However, it has one practicaWback; it adversely influences resource
efficiency. For example, if a process Pi requirdsy@e drive at the start of its execution and a
printer only toward the end of its execution, illvae forced to request both a tape drive and a
printer at the start. The printer will remain idietil the latter part of Pi's execution and anyqass
requiring a printer will be delayed until Pi comigle its execution. This situation also reduces the
effective degree of multiprogramming and, therefoeduces CPU efficiency

3.5 Cases/Examples
Deadlock operation detection

A system has four processes P1-P4, and 5, 7, andsbof resource classes R1, R2, and
R3, respectively. It is in the following state jusfore process P3 makes a request for 1
unit of resource class R1:

Ry R Ry Ry Ry Ry Ry R2Ry

W », [ X Total "
Pyl2]1]o P2t resources
Pyl1]3]1 Prli]4]o
pfolih Py Erce Ry RaR3

-~
Pyll1]2]2 Pgll]o]2 resources
Allocated Requested

resources resources

One resource unit of resource class R1 is allodatpdocess P3 and figure 3.2 is invoked
to check whether the system is in a deadlock. igwed above shows steps in operation of
the algorithm. Inputs to it are the sets Blocked Ranning initialized to {P1, P2, P4} and

{P3}, respectively, and matrices Allocated resosrceRequested resources, and
Free_resources. The algorithm transfers procestoRBe set Finished and frees the
resources allocated to it. The number of free urfithe resource classes is now 1, 1 and
2, respectively. The algorithm finds that proce4's Pending request can now be satisfied,
so it allocates the resources requested by P4ransférs P4 to the set Running. Since P4
is the only process in Running, it is transferredte set Finished. After freeing P4’s

resources, the algorithm finds that P1’'s resouetpigst can be satisfied and, after P1

93



CIT315 OPERATING SYSTEM

completes, P2’s resource request can be satiSflesl set Running is now empty so the
algorithm completes. A deadlock does not exishi dystem because the set Blocked is

empty

\!]
S
Discussion

1. Discuss the resource ranking policy in deadlockéeméon

2. Discuss how deadlock can be avoid using the resen@guest algorithm

4.0 Self-Assessment/Exercises
Considering a system with five processes PO thrétgland three resources types A, B,
C. Resource type A has 10 instances, B has 5 retaand type C has 7 instances. Suppose
at time tO following snapshot of the system hasldaken:

Process ~ Allocation ‘Max Available
ABC ABC ABC
P, o10 753 332
P, 200 322
P, 302 . 902
P, 211 222
P, 002 433

(i) What will be the content of need matrix?

(i) Is the system in safe state? If yes, then vidhéthe safe sequence?

(i) What will happen if process P1 requests odditonal instance of resource type A
and two instances of resource type C?

(iv) If arequest [3, 3, 0] by process P4 arrivethie state defined by (iii), can it be granted
immediately?

(v) If resource request [0, 2, 0] by process Povesrthen check whether it is granted or
not?

Solution:

94



CIT315 OPERATING SYSTEM

W -~ OoN |6
~ = QN Wl

A OO = g

(i) As we show that, Need [i, j] = Max [i,j] — Adcation [i, ]
So, the content of Need matrix is :
(i) Applying safety algorithm on the given system.
For Pi, if Need-K Available, then Pi is in safe sequence.
Available = Available + Allocation-i
So, for PO, Need0 =7, 4, 3]
(i=0)
Available = [3, 3, 2]
= Condition is false, So PO must wait.
for P1,(i=1)
Need-1=1[1,2,2]
Available = [3, 3, 2]
Need-1 < Available
So, P1 will be kept in safe sequence.
Now, Available will be updated as:
Available = Available + Allocation i
Available = [3,3,2] + [2,0,0] = [5,3,2]
for P2(i = 2),
Need, = [6, 0, 0]
Available =[5, 3, 2]
=> Condition is again false so P2 must wait.
for P3(i = 3),
Need3 =[0, 1, 1]
95



CIT315 OPERATING SYSTEM

Available =[5, 3, 2]
= Condition is true; P3 will be in safe sequence
Available = [5,3,2] + [2, 1, 1] = [7,4,3]
for P4(i = 4),
Need, = [4, 3, 1]
Available = [7, 4, 3]
=> Condition Need4 < Available is true
So,P4 is in safe sequence and Available = [7,4]8]0,2] =[7, 4, 5].
Now, we have two process PO and P2 in waiting state
With current available either PO or P2 can movsaie sequence.
Firstly, we take P2 whose Need2 = [6, 0, 0]
Available = [7, 4, 5]
Need?2 < Available
So, P2 now comes in safe state leaving the Availal4lz, 4, 5] + [3,0,2] = [10,4, 7]
Next, take PO whose Need =[7, 4, 3]
Available = [10, 4, 7]
NeedO < Available
So, PO now comes in safe state
Available = [10,4, 7] +[0,1,0] = [10,5, 7]
So the safe sequence is < P1, P3, P4, P2, PO thasgstem is in safdate.
(i) Since P1 requests some additional instané@ssmurces such that:
Request-1 =[1, O, 2]
To decide that whether this request is immediajednted we first check that
Requestl < Available
i.e., [1,0,2K][3,3,2] which holds true.
So, the request may be granted.
To confirm that this request is granted we cheekéw state by applying safety algorithm
that our system is in safe state or not. If the sate is in safe state then only this request
is granted otherwise not.
To define the new state of the system becauseeddrtival of request of P1 we follow the
Resource-Request algorithm which results as:
96



CIT315 OPERATING SYSTEM

Process " Allocation Need Available
ABC ABC ABC
P, 010 743 230
P 302 020
P, 302 600
P, 211 011
P, 002 431

We must determine whether this new system statafés To do so, we again execute our

safety algorithm and find the safe sequence as, $81P4, Po, P2 > which satisfies our

safety requirements. Hence, we can immediatelytgh@request for process P1.
(iv) The request for [3, 3, O] by P4 cannot be tgdrbecause -

Request4 = [3, 3, 0]

Available = [2, 3, 0]
In this situation the condition

Request4 < Available is false
So, it is not granted since resources are notaail
(v) The request for [0, 2, 0] by PO

request = [0, 2, 0] and Available = [2, 3,0]

Condition Request0 < Available is true

So, it may be granted. If it is granted then the s&ate of the system is defined as

Available = Available — Request0
=[2, 3, 0] —[0,2,0]
=12, 1, 0]
Allocation-0 = Allocation‘+ RequestO
=[0,1,0] + [0,2,0]
=0, 3, 0]
NeedO = Need0 — Request0
=[7,4,3]1—]0, 2,0]
=7, 2, 3]

97




CIT315 OPERATING SYSTEM

Process Allocation Need Avwvailable
‘ABC ABC ABC
F, 030 723 210
P, 202 020
P, 302 600 .
Py 211 ) o011 -
P, 002 431

Applying safety algorithm on this new state—

All five processes are in waiting state as norabie to satisfy the condition,

Need-i < Available

So the state represents an unsafe state. Thusstefgu PO is not granted though the

resources are available, but the resulting statessfe.

.
]

9,
5.0 Conclusion

A process must request a resource before usinglitraust release the resource after using it. A

process may request as many resources as it reqoicarry out its designated task. Obviously,

the number of resources requested may not exceetdttl number of resources available in the

system. In other words, a process cannot reques firinters if the system has only two.

A resource deadlock arises when four conditiond Bwhultaneously: Resources are nonshareable
and nonpreemptible, a process holds some resowttkesit waits for resources that are in use by
other processes, which is called the hold-and-waitdition; and circular waits exist among
processes. An OS can discover a deadlock by anglyhe allocation state of a system, which
consists of information concerning allocated resesirand resource requests on which processes

are blocked.

D

Deadlocks arise in resource sharing when a sebmditons concerning resource requests and

6.0 Summary

resource allocations hold simultaneously. Operasiysiems use several approaches to handle
deadlocks. In the deadlock detection and resolutipproach, the kernel checks whether the

conditions contributing to a deadlock hold simu#tansly, and eliminates a deadlock by
98



CIT315 OPERATING SYSTEM

judiciously aborting some processes so that their@ng processes are no longer in a deadlock.
In the deadlock prevention approach, the kernell@yspresource allocation policies that ensure
that the conditions for deadlocks do not hold steméously; it makes deadlocks impossible. In
the deadlock avoidance approach, the kernel daesake resource allocations that may lead to

deadlocks, so deadlocks do not arise.

‘F-"‘\ |
7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefdts. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(id. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@:hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (2015Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

Deadlock Detection and Prevention - Engineering rddlexts. (2021, March 22).
https://eng.libretexts.org/Courses/Delta_Collegei@png_System%3A_The Basics/06%3
A_Deadlock/6.2%3A_Deadlock_Detection_and_Prevention

Deadlock Detection Algorithm in Operating Syster@eeksforGeeks. (n.d.). Retrieved May 1,
2022, from https://www.geeksforgeeks.org/deadloetedtion-algorithm-in-operating-
system/

Deadlock Prevention in Operating System (OS) - &cdlopics. (2022, February 16).
https://www.scaler.com/topics/operating-system/ttsadprevention-in-operating-system/

OS Deadlock Prevention - javatpoint. (n.d.). Reett May 1, 2022, from
https://www.javatpoint.com/os-deadlock-prevention

Silberschatz, A., Gagne, G., & Galvin, P. B. (n.@perating Systems Concepts: Deadlocks: Vol.
Chapter 7 (Ninth). Retrieved May 1, 2022, from
https://lwww.cs.uic.edu/~jbell/CourseNotes/Operdbystems/7_Deadlocks.html

99



CIT315 OPERATING SYSTEM

Unit 3 Synchronization
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Monitors
3.2 Semaphores
3.3Cases/Examples
4.0 Self-Assessment Exercises
5.0Conclusion
6.0 Summary

7.0 References/Further Reading

100



CIT315 OPERATING SYSTEM

@1.0 Introduction

Synchronization primitives were developed to ovareothe limitations of algorithmic
implementations. The primitives are simple operaithat can be used to implement both mutual
exclusion and control synchronization. A semapl®eespecial kind of synchronization data that

can be used only through specific synchronizatiomigives.

\_‘@ 2.0 Intended Learning Outcomes (ILOS)

At the end of this unit, students will be able to
Explain deadlock and starvation resolution using

e Semaphores

e Monitors

3.0 Main Content
3.1 Semaphores

Semaphores are integer variables that are usedu® the critical section problem by using two

atomic operations, wait and signal that are usegtacess synchronization.

When a process performs a wait operation on a seon@pthe operation checks whether the value
of the semaphore is > 0. If so, it decrements #laesof the semaphore and lets the process
continue its execution; otherwise, it blocks thegaiss on the semaphore. A signal operation on a
semaphore activates a process blocked on the semgphany, or increments the value of the

semaphore by 1. Due to these semantics, semaphogealso called counting semaphores.

Indivisibility of the wait and signal operations ensured by the programming language or the
operating system that implements it. It ensuresrd® conditions cannot arise over a semaphore.

Processes use wait and signal operations to symizkrtheir execution with respect to one another.

101



CIT315 OPERATING SYSTEM

The initial value of a semaphore determines howynmocesses can get past the wait operation.

A process that does not get past a wait operatiblocked on the semaphore.

The below program describe both wait and signataijms

Wait Operation
wait (S)
{
while (S <= 0);
S--,
}
Signal Operation
Signal (S)
{
S++;
}

Counting semaphores can be used to control acoeasgiven resource consisting of a finite
number instances. The semaphore is initializedgoumber of resources available. Each process
that wishes to use a resource performs a waitatipa on the semaphore (thereby decrementing
the count). When a process releases a resoupsrfarms a signal() operation (incrementing the
count). When the count for the semaphore goes tdl Ogsources are being used. After that,
processes that wish to use a resource will bloc¢k the count becomes greater than 0. We can
also use semaphores to solve various synchronizg@tioblems. For example, consider two
concurrently running processes: P1 with a statefagrand P2 with a statement 52. Suppose we
require that 52 be executed only after 51 has cetegpl We can implement this scheme readily
by letting P1 and P2 share a common semaphore symthlized to 0, and by inserting the

statements.

Types of Semaphores

102



CIT315 OPERATING SYSTEM

There are two main types of semaphores i.e. cagisemaphores and binary semaphores. Details

about these are given as follows -

e Counting Semaphores

These are integer value semaphores and have astngotesl value domain. These
semaphores are used to coordinate the resourcesaedeere the semaphore count is the
number of available resources. If the resourceadded, semaphore coumautomatically

incremented and if the resources are removed,atetés decremented.

e Binary Semaphores

The binary semaphores are like counting semaphuretheir value is restricted to 0 and
1. The wait operation only works when the semaphsré and the signal operation
succeeds when semaphore is 0. It is sometimes éagm@plement binary semaphores than

counting semaphores
Advantages of Semaphores

Some of the advantages of semaphores are as foHows

e Semaphores allow only one process into the critsgadtion. They follow the mutual
exclusion principle strictly and are much more @it than some other methods of

synchronization.

e There is no resource wastage because of busy g/aitisemaphores as processor time is
not wasted unnecessarily to check if a conditidalfdled to allow a process to access the

critical section.

« Semaphores are implemented in the machine indeptodee of the microkernel. So they

are machine independent.
Disadvantages of Semaphores

Some of the disadvantages of semaphores are aw$all

e Semaphores are complicated so the wait and sigeaations must be implemented in the
correct order to prevent deadlocks.
103



CIT315 OPERATING SYSTEM

e Semaphores are impractical for last scale useeisitbe leads to loss of modularity. This
happens because the wait and signal operationsiréhe creation of a structured layout

for the system.

e Semaphores may lead to a priority inversion whenepriority processes may access the

critical section first and high priority processater.

3.2 Monitors

A monitor is a collection of procedures, variabkesd data structures that are all grouped together
in a special kind of module or package. Processssaall the procedures in a monitor whenever
they want to, but they cannot directly access tbaitar’s internal data structures from procedures

declared outside the monitor.

Monitors have an important property that makes theeful for achieving mutual exclusion: only
one process can be active in a monitor at anynhshMonitors are a programming-language
construct, so the compiler knows they are specidl @an handle calls to monitor procedures
differently from other procedure calls. Typicallyhen a process calls a monitor procedure, the
first few instructions of the procedure will chettksee if any other process is currently active
within the monitor. If so, the calling process ik suspended until the other process has left the
monitor. If no other process is using the monitbg calling process may enter. It is up to the
compiler to implement mutual exclusion on monitotrees, but a common way is to use a mutex
or a binary semaphore. Because the compiler, mopthgrammer, is arranging for the mutual
exclusion, it is much less likely that somethind) go wrong. In any event, the person writing the
monitor does not have to be aware of how the cangltranges for mutual exclusion. It is
sufficient to know that by turning all the critia@gions into monitor procedures, no two processes

will ever execute their critical regions at the satime.

The solution lies in the introduction of conditivariables, along with two operations on them,
wait and signal. When a monitor procedure discoteas it cannot continue (e.g., the producer
finds the buffer full), it does a wait on some citioth variable, say, full. This action causes the
calling process to block. It also allows anotheygesss that had been previously prohibited from

entering the monitor to enter now. We saw conditianables and these operations in the context

104



CIT315 OPERATING SYSTEM

of Pthreads earlier. This other process, for exanpe consumer, can wake up its sleeping partner
by doing a signal on the condition variable thatpartner is waiting on. To avoid having two
active processes in the monitor at the same tirmeyeeed a rule telling what happens after a signal.

Three propose solutions were postulated by HoatteBaimch Hansen which are:

¢ letting the newly awakened process run, susperntimgther one.
o finessing the problem by requiring that a procesimg a signal must exit the monitor

immediately

Condition variables are not counters. They do ramumulate signals for later use the way
semaphores do. Thus, if a condition variable isnaed with no one waiting on it, the signal is lost

forever.

monitor example
integer ¢
condition c;

procedure producert ).

end;

procedure consumer( );

end;

end monitor;

Figure 3.5: A monitor
3.3 Cases/Examples

Figure 3.5 shows a monitor type Sem_Mon_type timpiements a binary semaphore, and the

lower half shows three processes that use a morataable binary_sem.

105



CIT315

type Sem_Mon_rype = monitor
var
busy : boolean;
non_busy : condition;
procedure sem_wair;
begin

il busy = rrue then non_busy. wait;

busy = true;
end:
procedure sem_signal
begin
busy := false;
non_busy signal;
end:
begin | initialization )
busy := false;
end:

(@)

OPERATING SYSTEM

var binary_sem : Sem_Mon_type:,

begin

Parbegin
repeat repeat repeat
binarv_sem.sem_wair,

binarv_sem.sem_wair, binary_sem.sem_wair,

| Critical Section | | Critical Section | | Critica ISection |

binary_sem.sem_signal,  binary_sem.sem_signal:  binaryv_sem.sem_signal;

| Remainder of | Remainder of

{ Remainder of

the cycle | the cycle | the cycle |
forever: forever: forever:
Parend:
end.
Process P, Process P, Process P,

(b)

Figure 3.6: Monitor implementation of binary semayes

Recall from that, binary semaphore takes only v@iand 1, and is used to implement a critical
section. The boolean variable busy is used to atdievhether any process is currently using the
critical section. Thus, its values true and falserespond to the values 0 and 1 of the binary
semaphore, respectively. The condition variable basy corresponds to the condition that the
critical section is not busy; it is used to blogkgesses that try to enter a critical section while
busy = true. The proceduressem_wait and sem_sigmpé¢ment the wait and signal operations
on the binary semaphore. Binary_sem is a monitoabie. The initialization part of the monitor

type, which contains the statement busy :=falsé\eked when binary_sem is created. Hence

variable busy of binary_sem is initialized to false

A
\
Discussion

Explain the relationship between Monitor and serosaph

4.0 Self-Assessment/Exercises

1. Can condition variables be implemented with semaptres?

Answer

106



CIT315 OPERATING SYSTEM

Semaphores can be implemented with condition viesalprovided that there is also a primitive
to protect a critical section (lock/unlock) so thath the semaphore value and the condition are

checked atomically. In Nachos for example, thiddae with disabling interrupts.

2. Define briefly the lost wakeup problem.

Answer

The lost wakeup problem occurs when two threadsisirgy critical section to synchronize their
execution. If thread 1 reaches the case wheredbessary condition will be false, such as when a
consumer sees that the buffer is empty, it willggleep. It is possible that the OS will interrupt
thread 1 just before it goes to sleep and schetivbad 2 which could make the condition for
thread 1 true again, for example by adding somgttorthe buffer. If this happens thread 2 will
signal thread 1 to wake up, but since thread bisasleep yet, the wakeup signal is lost. At some
point thread 1 will continue executing and immeeliago back to sleep. Eventually, thread 2 will
find its condition to be false, for example if theffer becomes full, and it will go to sleep. Now

both threads are asleep and neither can be woken up

\
1)

i,
5.0 Conclusion

Semaphores are used to implement synchronizati@nitinal region solving a lot of processor

issue. However, error arises when programmer dadonstruct sequential processes. This issue

that may arise have been dealt with the implemiemtatf monitors

D

We have seen how processes and synchronizatiomvuese solved with help of semaphores and

6.0 Summary

monitors. Semaphores solve the critical sectiorblera by using wait and signal operations.
Monitors uses procedures, variable and data stegto ensure that only one process can be active

in a monitor at any instant.

107



CIT315 OPERATING SYSTEM

ey

— 7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(ld. Marcia & J. Tracy (eds.); Fourth).
Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Monitors in Operating System (2020, September 26).
https://www.tutorialandexample.com/monitors-in-agerg-system

Monitors in  Process Synchronization - GeeksforGeeK2019, September 30).
https://www.geeksforgeeks.org/monitors-in-processehronization/

Semaphores in  Operating System(n.d.). Retrieved May 1, 2022, from
https://www.tutorialspoint.com/semaphores-in-opagsystem

Semaphores in Process Synchronization - GeeksfesGeé2021, November 22).
https://www.geeksforgeeks.org/semaphores-in-presgsshronization/

Williams, L. (2022, April 16).What is Semaphore? Counting, Binary Types with pkam
https://www.guru99.com/semaphore-in-operating-systéml

108



CIT315 OPERATING SYSTEM

Unit 4 Synchronization Problems
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Producer — Consumer problem
3.2 Reader — Writer Problems
3.3Dining Philosophers
3.4 Cases/Examples
4.0 Self-Assessment Exercises
5.0Conclusion
6.0 Summary

7.0 References/Further Reading

109



CIT315 OPERATING SYSTEM

j1.0 Introduction

The operating systems literature is full of intéireg problems that have been widely discussed

and analyzed.
A solution to a process synchronization problenmusthoneet three important criteria:

e Correctness: Data access synchronization and ¢aytrohronization should be performed
in accordance with synchronization requirementhefproblem.

e Maximum concurrency: A process should be able erate freely except when it needs to
wait for other processes to perform synchronizasictons.

e No busy waits: To avoid performance degradationcksonization should be performed

through blocking rather than through busy waits.

Critical sections and signaling are the key elemefiprocess synchronization, so a solution to a
process synchronization problem should incorpaaataitable combination of these elements. In
this unit, we analyze some classic problems inggesynchronization, which are representative
of synchronization problems in various applicatdlmmains, and discuss issues (and common
mistakes) in designing their solutions. We willealse implementing their solutions using various

synchronization features provided in programmingyleages.

U@ 2.0 Intended Learning Outcomes (ILOS)

At the end of this unit, students will be able to

e Solving synchronization problems

110



CIT315 OPERATING SYSTEM

3.0 Main Content

3.1 Producer — Consumer Problem

A producers—consumers system with bounded buffersists of an unspecified number of
producer and consumer processes and a finite pooiffers. Each buffer is capable of holding an
item of information. It is said to become full whaproducer writes a new item into it, and become
empty when a consumer copies out an item contaimet it is empty when the producers—
consumers system starts its operation. A produaaregs produces one item of information at a
time and writes it into an empty buffer. A consurpascess consumes information one item at a
time from a full buffer. A producers—consumers sgstwith bounded buffers is a useful

abstraction for many practical synchronization peois.

c—

@~-= -9
Producers —1 Consumers
o-=-o
—/

Buffer pool

Figure 3.4: Producer — Consumer with bounded buffer

A print service is a good example. A fixed-size wgi®f print requests is the bounded buffer. A
process that adds a print request to the queuepi®ducer process, and a print daemon is a

consumer process.
A solution to the producers — consumers problemt satssfy the following conditions:

A producer must not overwrite a full buffer.
A consumer must not consume an empty buffer.

Producers and consumers must access buffers inualiyiexclusive manner.

w0 DD PRE

Information must be consumed in the same ordethiictwit is put into the buffers, i.e., in
FIFO order.

111



CIT315 OPERATING SYSTEM

Figure 3.5 shows an outline for the producers—cmess problem. Producer and consumer
processes access a buffer inside a critical seigmoducer enters its critical section and checks
whether an empty buffer exists. If so, it produices that buffer; otherwise, it merely exits from
its critical section. This sequence is repeated iiriinds an empty buffer. The boolean variable
produced is used to break out of thieile loop after the producer produces into an emptyelouf

Analogously, a consumer makes repeated checksitimiis a full buffer to consume from.

This outline suffers from two problems—poor conemcy and busy waits. The pool contains
many buffers, and so it should be possible for pceds and consumers to concurrently access

empty and full buffers, respectively.

begin
Parbegin
var produced : boolean: var consumed : boolean;
repeat repeat
produced = false consumed = false;
while produced = false while consumed = false
E if an empry buffer exisis : : if a full buffer exists
. then ’ . then
: { Produccinabaffer | | ¢ { Consume a buffer )
E produced := true; : ‘ consumed = true;
| Remainder of the cycle | | Remainder of the cycle )
forever: forever:
Parend:

end

Producer Consumer

Figure 3.5: An outline of producer — consumer ugiritical sections

However, both produce and consume actions takes phacritical sections for the entire buffer
pool, and so only one process, whether produceoonsumer, can access a buffer at any time.
Busy waits exist in both producers and consumerproilucer repeatedly checks for an empty
buffer and a consumer repeatedly checks for dfuffer. To avoid busy waits, a producer process
should be blocked if an empty buffer is not avd#@abVhen a consumer consumes from a buffer,
it should activate a producer that is waiting foreanpty buffer. Similarly, a consumer should be
blocked if a full buffer is not available. A prodercshould activate such a consumer after producing

in a buffer.

3.2 Reader-Writer Problem

112



CIT315 OPERATING SYSTEM

Another problem is the readers and writers probMiith models access to a data base. Imagine
a big data base, such as banking system, with tnamgaction processes wishing to read and write
it. It is acceptable to have multiple processeslirgathe data base at the same time, but if one
process is writing (i.e., changing) the data basegther processes may have access to the data

base, not even readers. The question is how dpragram the readers and the writers?
A solution to the readers—writers problem musts$athe following conditions:

1. Many readers can perform reading concurrently.

2. Reading is prohibited while a writer is writing.

3. Only one writer can perform writing at any time.

4. A reader has a nonpreemptive priority over writeées; it gets access to the shared data

ahead of a waiting writer, but it does not preempactive writer.

Bank account

print
statcment O ~ o O credit
stat O - ~ O e
analysis

Readers Writers

Figure 3.6: Reader-Writer problem in banking system

Figure 3.6 illustrates an example of a readersevaystem. The readers and writers share a bank
account. The reader processes print statementanahsilysis merely read the data from the bank
account; hence they can execute concurrently. Caedidebit modify the balance in the account.
Clearly only one of them should be active at anymaont and none of the readers should be

concurrent with it.

Figure 3.7 is an outline for a readers—writersesystWriting is performed in a critical section. A
critical section is not used in a reader, becaliaewould prevent concurrency between readers.

A signaling arrangement is used to handle blockindy activation of readers and writers.

113



CIT315 OPERATING SYSTEM

Parbegin
repeat repeat
I a writer is writing If reader(s) are reading. or a
lhfn wriler s wrining
| wait |} then
[ read ) [ wait ):
If no other readers reading ;'Iu\;-:r-l;-i:f
then If reader(s) or writer(s) waiting
if writer(s) waiting then
then activate either one wailing
activate one waiting writer, writer or all waiting readers;
forever, forever:
Parend.
end
Reader(s) Writer(s)

Figure 3.7: An outline for a readers-writers system

3.3 Dining Philosophers

Five philosophers sit around a table ponderingogbiphical issues. A plate of spaghetti is kept in
front of each philosopher, and a fork is placedMeen each pair of philosophers. To eat, a
philosopher must pick up the two forks placed betwieim and the neighbors on either side, one
at a time. The problem is to design processes poesent the philosophers such that each

philosopher can eat when hungry and none dies ruddu

Figure 3.8: Dining Philosophers

The correctness condition in the dining philosophsrstem is that a hungry philosopher should
not face indefinite waits when he decides to elaé dhallenge is to design a solution that does not
suffer from either deadlocks, where processes becblocked waiting for each other), or

livelocks, where processes are not blocked butrdefeach other indefinitely.

Consider the outline of a philosopher process Bere details of process synchronization have

been omitted. A philosopher picks up the forks aha time, say, first the left fork and then the

114



CIT315 OPERATING SYSTEM

right fork. This solution is prone to deadlock, &ese if all philosophers simultaneously lift their
left forks, none will be able to lift the right frit also contains race conditions because neighbo

might fight over a shared fork.

repeat
if left fork is not available
then
block (P):
lift left fork:
if right fork is not available
then
block (P):
lift night fork:
| cat }
put down both forks
if left neighbor is waiting for his right fork
then
activate (left neighbor);
if right ncighbor is waiting for his left fork
then
activare (rnight neighbor);
| think |
forever

Figure 3.9: An outline of dining philosopher

l!l
Discussion

Explain Dekker’s Algorithm

4.0 Self-Assessment/Exercise

The dining philosopher online solution is prone todeadlock, because if all philosophers
simultaneously lift their left forks, none will be able to lift the right fork! It also contains race
conditions because neighbors might fight over a shad fork. How can it be improved to

avoid deadlock?
Answer

We can avoid deadlocks by modifying the philosoprcess so that if the right fork is not
available, the philosopher would defer to his ledighbor by putting down the left fork and
repeating the attempt to take the forks sometirtex.ldhe below is an improved outline for the

dining philosopher

115



CIT315

var successful : boolean;
repeat
successful := false:
while (not successful) -
i if both forks are available then |
! lift the forks one at a time; |}
successful := true: !

if successful = false
then
block If" ).

............................

if left neighbor is waiting for his right fork
then
activate (left neighbor);
if right neighbor is waiting for his left fork
then
activate (nght ncighbor):
| think }
forever

19

5.0 Conclusion

We have seen few synchronization problems suchaghiper-consumer, readers and writers and
dining philosophers. We have also provided outlitted poised solutions to the problem. These

solutions solved synchronization problems to armrtxtHowever, the solutions cannot solve the

problems completely.

6.0 Summary

We present a solution to the dining-philosopheobjam that ensures freedom from deadlocks.
Note, however, that any satisfactory solution te thning-philosophers problem must guard

against the possibility that one of the philosogheill starve to death. A deadlock-free solution

OPERATING SYSTEM

does not necessarily eliminate the possibilitytafation.

116



CIT315 OPERATING SYSTEM

ey

7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(id. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

OS - Classical Problems of Synchronization | i2iats. (n.d.). Retrieved May 1, 2022, from

https://www.i2tutorials.com/os-introduction/os-dasal-problems-of-synchronization/

Readers-Writers Problem | Set 1 (Introduction aedd®rs Preference Solution) - GeeksforGeeks.
(2022, February 28). https://www.geeksforgeeksreeglers-writers-problem-set-1-

introduction-and-readers-preference-solution/

The Dining Philosophers Problem - javatpoint. (n.dRetrieved May 1, 2022, from

https://www.javatpoint.com/os-dining-philosophersiglem

117



CIT315 OPERATING SYSTEM

Module 4 Memory Management
Introduction of Module

Gaining an understanding of memory management takedeeply into the shared realm of
hardware architecture and software architecturem@ike sense of the hardware architecture, we
need to understand the software requirements. Memanagement is much more than dynamic
storage allocation. It involves providing an appraie memory abstraction and making it work
on the available physical resources, usually cameiito consist of a high-speed cache, moderate-
speed primary storage, and low-speed secondaggetoWe begin with a brief history of memory
management, introducing some of the more importarhory management issues and how they
were handled early on. We then focus on the corafepemory, swapping and partitions, memory

paging and segmentation, Thrashing, caching amadlyithe replacement policies.
Unit 1: Memory Swapping

Unit 2: Memory Partition

Unit 3: Virtual Memory

Unit 4. Caching and Thrashing

Unit 5: Replacement Policies

118



CIT315 OPERATING SYSTEM

Unit 1 Memory Swapping and Addresses
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Logical and Physical Address
3.2 Address Binding mechanism
3.3 Memory Swapping
3.4 Cases/Examples
4.0 Self-Assessment Exercises
5.0Conclusion
6.0 Summary

7.0 References/Further Reading

119



CIT315 OPERATING SYSTEM

@1.0 Introduction

Memory swapping is a computer technology that exsabh operating system to provide more
memory to a running application or process thanavsilable in physical random access
memory (RAM). When the physical system memory isaessted, the operating system can opt to

make use of memory swapping techniques to getiaddltmemory.

Memory swapping is among the multiple techniquesrfemory management in modern systems.
Physical memory alone is sometimes not sufficigritich is why there are different ways of

augmenting RAM in a system with these additionaianys.

U@ 2.0 Intended Learning Outcomes (ILOS)

At the end of this unit, students will be able to

¢ Describe the techniques of memory swapping

e Demonstrate how resources are allocated

)

fa—
L—
—
-

|

3.0 Main Content

3.1 Logical and Physical Addresses

Logical Addressis generated by CPU while a program is runninge [Bigical address is virtual
address as it does not exist physically, thereforealso known as Virtual Address. This address
is used as a reference to access the physical mdowation by CPU. The term Logical Address
Space is used for the set of all logical addrespaserated by a program’s perspective.
The hardware device called Memory-Management UWnitsed for mapping logical address to
its corresponding physical addreBsiysical Addressidentifies a physical location of required
data in a memory. The user never directly dealb e physical address but can be access by
its corresponding logical address. The user progranerates the logical address and thinks that

120



CIT315 OPERATING SYSTEM

the program is running in this logical address ttwat program needs physical memory for its
execution, therefore, the logical address must &epad to the physical address by MMU before
they are used. The term Physical Address Spaceeis for all physical addresses corresponding

to the logical addresses in a Logical address space

Relocation
logical register physical
CPU address O address A Wi
346 14346
14000
MMU

Figure 4.0: Memory addresses

Relocation is a method of shifting a user programmfone memory location to another. There
are two types of relocatiorstatic and dynamic. Static relocation takes plkackad time and

remain fixed once the program is relocated, wiitedynamic relocation takes place at run time.

Differences Between Logical and Physical Address @perating System

1. The basic difference between Logical and physiddr@ss is that Logical address is
generated by CPU in perspective of a program wisetiea physical address is a

location that exists in the memory unit.

2. Logical Address Space is the set of all logicalraddes generated by CPU for a
program whereas the set of all physical addresspepo corresponding logical

addresses is called Physical Address Space.

121



CIT315 OPERATING SYSTEM

3. The logical address does not exist physically ettemory whereas physical address

is a location in the memory that can be accessgsliqHly.

4. Identical logical addresses are generated by Centipile and Load time address
binding methods whereas they differ from each otherun-time address binding
method.

5. The logical address is generated by the CPU whieprogram is running whereas

the physical address is computed by the Memory dament Unit (MMU).

3.2 Address Binding Mechanism

Memory consists of large array of words or byteghewith its own address. Usually, a program
resides on a disk as binary executable file. Fergitogram to execute, it must be brought into
the main memory using its address. When the prammsgletes its execution, it set the memory
space free for next process to use.

Address binding of instructions and data to memexigresses can happen at three different

stages.

= Compile time: Binding at compile time generates absolute asklre where a
prior knowledge is required in the main memory. Mesompile code if starting
location changes

*» Load time: If it is not known at compile time where a presewill reside in
memory then the complier must generate re-locatatitlress. In this case final
binding is delayed until load time.

» Execution time This method permitmoving of a process from one memory
segment to another during run time. In this casel inding is delayed until run

time. Need hardware support for address maps (g&ge and limitregisters)

122



CIT315 OPERATING SYSTEM

3.3 Memory Swapping

Swapping is a memory management technique andeis tastemporarily remove the inactive
programs from the main memory of the computer sysfeny process must be in the memory for
its execution, but can be swapped temporarily duh@mory to a backing store and then again
brought back into the memory to complete its exeautSwapping is done so that other processes
get memory for their execution.

Due to the swapping technique performance usuaty gffected, but it also helps in running
multiple and big processes in parallBhe swappingprocess is also known as a technique
for memory compaction.Basically, low priority processes may be swappedsouhat processes
with a higher priority may be loaded and executed.

1 Swap Out

~2 ‘_. > .5‘"".-

== s .| 5
2 nape Backing Store

Main Memory

Figure 4.1: Memory Swapping In & Out
The above diagram shows swapping of two proceskesanthe disk is used as a Backing store.

In the above diagram, suppose there is a multipragring environment with a round-robin
scheduling algorithm; whenever the time quantumregghen the memory manager starts to swap
out those processes that are just finished and awagier process into the memory that has been
freed. And in the meantime, the CPU scheduler atlescthe time slice to some other processes in
the memory. The swapping of processes by the memmawyager is fast enough that some
processes will be in memory, ready to execute, viherCPU scheduler wants to reschedule the
CPU.

A variant of the swapping technique is the pricbsed scheduling algorithm. If any higher-

priority process arrives and wants service, thenrttemory manager swaps out lower priority

123



CIT315 OPERATING SYSTEM

processes and then load the higher priority preseasd then execute them. When the process
with higher priority finishes, then the processhaltwer priority swapped back in and continues

its execution. This variant is sometimes knownadisim and roll out.

There are two more concepts that come in the swgpechnique and these asgap inandswap

out.
Swap In and Swap Out in OS

The procedure by which any process gets removed the hard disland placed in the main
memory or RAMcommonly known as Swap.In

On the other hand, Swap Qstthe method of removing a process from the magmory or
RAM and then adding it to the Hard Disk

Advantages of Swapping
The advantages/benefits of the Swapping technigpiasafollows:

1. The swapping technique mainly helps the CPU to m@maultiple processes within a
single main memory.

2. This technique helps to create and use virtual nngmo

3. With the help of this technique, the CPU can paenfgeveral tasks simultaneously. Thus,

processes need not wait too long before their diacu
4. This technique is economical.

5. This technique can be easily applied to prioritgdzhscheduling in order to improve its

performance.
Disadvantages of Swapping
The drawbacks of the swapping technique are aswell

1. There may be inefficiency in the case if a resowrceariable is commonly used by those
processes that are participating in the swappioggss.

2. If the algorithm used for swapping is not good ttiem overall method can increase the

number of page faults and thus decline the ovpeafbrmance of processing.

124



CIT315 OPERATING SYSTEM

3. If the computer system loses power at the timeigih Iswapping activity, then the user

might lose all the information related to the peogr

m
Discussion

Explain the term Fragmentation

\l/cf/|
5.0 Conclusion

The process of memory swapping is managed by aratpg system or by a virtual machine
hypervisor. Swapping is often enabled by defadlgugh users can choose to disable the

capability.

The actual memory swapping process and the creatiarswap file is automatically managed by
the operating system. It is initiated when needephg/sical RAM is used and additional capacity
is required by processes and applications. As iadditRAM is required, the state of the physical
memory page is mapped to the swap space, enabliograof virtual (non-physical RAM)

memory capacity. In other words, the main purpdsswapping in memory management is to

enable more usable memory than held by the compateivare.

>

The process of memory swapping is managed by aratpg system or by a virtual machine

6.0 Summary

hypervisor. Main purpose of swapping in memory ngemaent is to enable more usable memory
than held by the computer hardware. Compile tintelaad time address binding generates logical
and physical addresses which are identical, whexédsess binding generated at execution time,

results in different logical and physical address.

125



CIT315 OPERATING SYSTEM

ey

7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(id. Marcia & J. Tracy (eds.); Fourth).
Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (2015Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

Address Binding and its Types - GeeksforGeeks. @@2020ctober 23).
https://www.geeksforgeeks.org/address-binding-aswypes/

Kerner, M. (2019, August 8). What is Memory Swapg@in| Enterprise Storage Forum.

https://www.enterprisestorageforum.com/hardwaretvisranemory-swapping/

Logical and Physical Address in Operating SystenGeeksforGeeks. (2022, March 25).

https://www.geeksforgeeks.org/logical-and-physmddiress-in-operating-system/

126



CIT315 OPERATING SYSTEM

Unit 2 Memory Partition
Contents

1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Contiguous and Non-contiguous Memory Allogatio
3.2Memory Partitioning
3.3 Partition Allocation Methods
3.4 Cases/Examples
4.0 Self-Assessment Exercises
4 Conclusion
6.0 Summary

7.0 References/Further Reading

127



CIT315 OPERATING SYSTEM

@1.0 Introduction

Memory is allocated to processes until finally, themory requirements of the next process cannot
be satisfied i.e, no available block of memoryl{ote) is large enough to hold that process. The
operating system can then wait until a large endalgtk is available, or it can skip down the input
queue to see whether the smaller memory requiren@rdome other process can be met. The
main memory must accommodate both the operatingrsyand the various user processes. We
therefore need to allocate main memory in the raffistient way possible. This unit explains one

common methods, partitioning and memory allocation.

\_‘@ 2.0 Intended Learning Outcomes (ILOS)

At the end of unit, students will be able to

e Describe memory allocation to processes

e Use the best fit memory to fix allocation issues

s
—
—_—
-

3.0 Main Content

3.1  Contiguous and non-contiguous Memory Allocatio
Contiguous Memory Allocation

In Contiguous Memory Allocation whenever any usescpss request for the memory then a
single section of the contiguous memory block iscated to that process according to the
requirements of the process. Contiguous memorycaton is achieved just by dividing the

memoryinto thefixed-sized partition

In this, all the available memory space remaingtiogr at one place and freely available memory

partitions are not distributdtere and there across tlvhole memory space.

128



CIT315 OPERATING SYSTEM

Process

Memory Blocks
Figure 4.2: Contiguous allocation

Non-Contiguous Memory Allocation

With the help of Non-contiguous memory allocati@nprocess is allowed txquire several
memory blocks at different locations in the memacgording to its need. In the non-contiguous
memory allocationthe available free memory space is distributed hed there which means that

all the free memory space is not in one place.

In this technique, memory space acquired by a pgtenot at one place but it is at different

locations according to the requirements of the @sec

Memory Blocks

Figure 4.3: Non-contiguous memory allocation

129



CIT315 OPERATING SYSTEM

3.2 Memory Partitioning

Memory partitioning is the system by which the meynof a computer system is divided into
sections for use by the resident programs. Theseamedivisions are known as partitions. There
are different ways in which memory can be partgidn(i.e fixed, variable, and dynamic

partitioning).
Fixed partitioning

It is defined as the system of dividing memory imton-overlapping sizes that are fixed,
unmovable, static. A process may be loaded int@argtjpn of equal or greater size and is confined

to its allocated partition.

If we have comparatively small processes with resfmethe fixed partition sizes, this poses a big
problem. This results in occupying all partitionsthwlots of unoccupied space left. This
unoccupied space is knownfesgmentation. Within the fixed partition context, this is knowas
internal fragmentation (IF). This is because of unused space created by &gwratithin its
allocated partition (internal).

In fixed partition method, the partitions coulddfelifferent sizes, but once decided at the time of

system generation, they remain fixed.

An example of partition memory is shown here. Outhe six partitions one is occupied by the
OS and 3 partitions are allocated to procegse&andPy.The remaining 2 shaded partitions are

free and available for allocation of next processes

.
)

Figure 4.4: Blocks of memory

130



CIT315 OPERATING SYSTEM

Variable partitioning

Variable partitioning is the system of dividing menmy into non-overlapping but variable sizes.
This system of partitioning is more flexible thédme tfixed partitioning configuration, but it's still
not the most ideal solution. Small processes aneti small partitions (item 1) and large processe
fit into larger partitions (items 2 and 3). Thesegesses do not necessarily fit exactly, even thoug
there are other unoccupied partitions. Items 3 4rae larger processes of the same size, but

memory has only one available partition that caeither of them.
The flexibility offered in variable partitioningidtdoes not completely solve our problems.

Most disadvantages of static partitionare directly attributed to itsflexibility andinability to
adapt changing system needs. One of the primathjgns is the internal fragmentatibmter nal

fragmentation is the difference in size between the process tgrallocated partition.

To remove such problems attributed to static paniihg of memory, dynamic (variable)

partitioning is used in which partitions are defirdynamically rather than static.
Dynamic partitioning

In dynamic partitioning, the partitions used arevafiable length and number. When a process is
brought into the memory, it is allocated exactlyrhat amount of memory that it needs, not more

than that it requires.

An example shown below uses 1 MB memory for dynapadition. The first three processes
P; P, P; are loaded starting where OS ends and occupgnemigh space for each process (Figure
4.5: dynamic partitioning a-h). This leaves a srhale at the end of the memory, which is too
small for the fourth procedy. Thus, the OS must swap out any of the three psoaaich is not
currently required according to short term sched@ayP, is swapped out (f, this leaves sufficient

space to load, (fig 4.5(f)). SinceP, is smaller thar, so another hole is created.

131



CIT315

YR

OPERATING SYSTEM

128 % }szax N 03 0s
W } Py }ma P, }mx
. 806 K B,  [p224K P, __}2265(
lfsa:%zgﬁm} } W }3521’( Py 226 K
W77, T e
(@ @ z)
1 ?%- E E’@K . ;%c‘__ /%}%R Py ﬁ“ﬁﬁ
T S NS ™ T e
féjé%}%’ﬁ s é@“ WWW %%ﬁi S AL LIRS, g;?;f
TPy } " By i } .... d B, ) %m;{ B - E%H
g e LIEFLATFT

o

%

Figure 4.5:dynamic memory partitioning

Partitioning Descriptive Table (PDT)

Once partitions are defined, an OS needs to keel tf their status, such as free or in use, for

allocation purposes. Current partitions statusattributes are collected in a data structure called

PDT. As shown below

Partition No. Partition Par!itinn Partition
base size status

0 0K 100 K Allocated
1 100 K 300 K Free
2 400 K 100 K Allocated
3 500 K 250 K Allocated
4 750 K 150 K Allocated
5 900 K 100 K Free

Figure 4.6: Partition Table description

132




CIT315 OPERATING SYSTEM

In PDT, patrtition is defined by its base addregs and status. When static partition is used, only
status field of each entry varies either free tmcalted, all other fields are static and contaitied
values defined at partition definition time. Two joraproblems arise in static partition (we will

propose solution in the partition allocation metsjd
1. How to select a specific partition for a given @ss?

2. What is done when no suitable partition is avaddbt allocation

3.3 Partition Allocation Methods
The following are four common memory managemertirigques.

Single contiguous allocationSimplest allocation method used by MS-DOS. All nogyn

(except some reserved for OS) is available to ags®.

Partition allocation: Memory is divided into different blocks or pamitis. Each process is

allocated according to the requirement.

In Partition Allocation, when there is more than one patrtition freely adé to accommodate
a process’s request, a partition must be seledtedchoose a particular partition, a partition
allocation method is needed. A partition allocatimethod is considered better if it avoids

internal fragmentation.

When it is time to load a process into the main mgnand if there is more than one free block

of memory of sufficient size then the OS decidescWliree block to allocate.
There are different Placement Algorithm:

A. First Fit

B. Best Fit

C. Worst Fit

D. Next Fit

133



CIT315 OPERATING SYSTEM

1. First Fit: In the first fit, the partition is allocated whigs the first sufficient block from
the top of Main Memory. It scans memory from thejibaing and chooses the first

available block that is large enough. Thus, itedles the first hole that is large enough.

Figure 4.6: First fit technique

2. Best Fit Allocate the process to the partition which isfingt smallest sufficient partition
among the free available partition. It searchesethtée list of holes to find the smallest

hole whose size is greater than or equal to treecizthe process.

=)

Figure 4.7: Best fit technique

3. Worst Fit Allocate the process to the partition which is ldrgest sufficient among the

freely available partitions available in the maiemory. It is opposite to the best-fit

134



CIT315 OPERATING SYSTEM

algorithm. It searches the entire list of holedital the largest hole and allocate it to

process.

&3

Figure 4.8: Worst fit technique
4. Next Fit: Next fit is similar to the first fit but it will sarch for the first sufficient partition

from the last allocation point.

The first problem stated in the DPT can be solveseiveral ways, for which first fit and best fit
are probably the most common strategies. Whentselelsetween the two approaches, a trade-
off between execution speed and memory utilizasaronsidered. While first fit terminates upon
finding the 2! partition of adequate size (faster), the bessddrches all PDT entries to identify
the tightest fit, as such best fit may achieve @aigltilization of memory.

3.4 Cases/Example

Considering the example of the working of the two artition allocation strategies.,
considering a process of size 70KB to be created for its allocation in tb example show
below.

135



CIT315 OPERATING SYSTEM

"
-

Applying first fit method, the proce$3will be allocated in partition 1 which will rest800 — 70

= 230 gap of unusable memory until prodéssrminates or swapped out of the memory. Applying
best fit algorithm, proced3will be allocated in partition 5 which will resul00 KB — 70KB = 30
KB of unusable memory units.

Comparing the two methods, best fit gives us bettemory management. However, if we are
interested in time, the best fit requires more tthran first fit.

l!l
Discussion

Explain what you understand by Resident Monitor

4.0 Self-Assessment/Exercises

1. Define external and internal fragmentation and fifgthe differences between them.

Answer

Internal fragmentation is where the memory managjecates more for each allocation
than is actually requested. Internal fragmentatsotihe wasted (unused) space within a
page. For example if | need 1K of memory, but thgepsize is 4K, then there is 3K of
wasted space due to internal fragmentation. Extéragmentation is the inability to use

memory because free memory is divided into manylisbhacks. If live objects are
136



CIT315 OPERATING SYSTEM

scattered, the free blocks cannot be coalescedherak no large blocks can be allocated.
External fragmentation is the wasted space outsidey group of allocated pages that is
too small to be used to satisfy another request. é&@mple if best-fit memory
management is used, then very small areas of mearerlikely to remain, which may
not be usable by any future request. Both typdsagimentation result in free memory
that is unusable by the system.

2. Given memory partitions of 100 KB, 500 KB, 200 KE)O KB and 600 KB (in order),
how would each of the first-fit, best-fit and wofdtalgorithms place processes of 212
KB, 417 KB, 112 KB and 426 KB (in that order) ? \&hialgorithm makes the most

efficient use of memory?

Answer

First-Fit:

212K is put in 500K partition.

417K is put in 600K patrtition.

112K is put in 288K partition (new partition 288K5680K - 212K).
426K must wait.

Best-Fit:

212K is put in 300K partition.
417K is put in 500K patrtition.
112K is put in 200K partition.
426K is put in 600K partition.

Worst-Fit:

212K is put in 600K partition.
417K is put in 500K partition.
112K is put in 388K partition.
426K must wait.

In this example, Best-Fit turns out to be the best

137



CIT315 OPERATING SYSTEM

19

Operating systems choose static and dynamic meaflogation under different circumstances to

5.0 Conclusion

obtain the best combination of execution efficieraryd memory efficiency. When sufficient
information about memory requirements is availablgriori, the kernel or the run-time library
makes memory allocation decisions statically, wipebvides execution efficiency. When little
information is available a priori, the memory alition decisions are made dynamically, which

incurs higher overhead but ensures efficient usaerhory.

@

Memory binding is the association of memory add¥ssgith instructions and data of a program.

6.0 Summary

To provide convenience and flexibility, memory bimglis performed several times to a program,
the compiler and linker perform it statically, j.eefore program execution begins, whereas the
OS performs it dynamically, i.e., during executiminthe program. The kernel uses a model of

memory allocation to a process that provides fdh Istatic and dynamic memory binding

138



CIT315 OPERATING SYSTEM

ey

7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(ld. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)0Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

7.4: Memory Partitioning - Engineering LibreTex(2021, March 31).
https://eng.libretexts.org/Courses/Delta_Collegei@png_System%3A_The_Basics/07%3
A_Memory/7.4%3A_Memory_Partitioning

Difference between Contiguous and Noncontiguousdiewillocation - GeeksforGeek®021,
June 1). https://www.geeksforgeeks.org/differenesvieen-contiguous-and-noncontiguous-

memory-allocation/

139



CIT315 OPERATING SYSTEM

Unit 3 Virtual Memory
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Paging

3.2Segmentation

3.3Cases/Examples
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary

7.0 References/Further Reading

140



CIT315 OPERATING SYSTEM

@1.0 Introduction

Virtual memory is a part of the memory hierarchgttibonsists of memory and a disk. Virtual
memory is implemented through the noncontiguous amgrallocation model and comprises both
hardware components and a software component callgtlial memory manager. The hardware
components speed up address translation and teelgrtbal memory manager perform its tasks
more effectively. The virtual memory manager desiddich portions of a process address space
should be in memory at any time. Memory paging segimentation are the two techniques that

will be discussdin this unit

U@ 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will able to

e Explain the concept of memory segnegitin and paging

e Solving memory allocation issues into non-contiggimemory spaces

1

u--—-!

|

3.0 Main Content

3.1 Paging

Paging is a memory management scheme that remiogesduirement of contiguous allocation

of physical memory. It permits the physical addrgsace of the process to be non-contiguous.

The physical memory is conceptually divided intowember of fixed —size blocks call&mes

and the logical address space is also split inedfsize blocks, calleplages For a process to be
executed, its pages are loaded into any availaateds from the backing store. The backing store
Is also divided into fixed size blocks that arahef same size of the frames, i.e the size of adram

is same as the size of a page for particular harlwa

Allocation of memory consisbof finding sufficient number of unused page frafmedoading the

pages of the requesting process for its executinraddress translation scheme is used to map the

141



CIT315 OPERATING SYSTEM

logical pages to their physical counterparts. Semeh page is mapped separately, different page

frame allocated to a single process need not occapiiguous areas of the physical memory.

The figure below illustrates the basic principlepafying, using a 16 MB system in which logical
and physical addresses are assume to be 24 bitsreaze. The logical address is divided into
four pages numbered from 0 to 3. The mapping atiagddress to physical address in paging
system is performed at page level. Particularlgheartual address is divided into two parts: the
page number (p) and the offset (d) within that p&jece page (p) and frame (f) have identical
sizes, offsets within each are identical and ne#da mapped.

Physical Page
address frame
000000
Page Page = =
Logical Logical number . _trame 100000 100
page address 0| FFD 101000 Py 101
0 00000 1] 100 102000 102
103000 103
. —] 01000 2| 103 B,
CcPU — 02000 I_. T T
2| LDA 003 200 sl FFC000 FFC
3 03000 PMT FFDO0O = FFD
FFE000 £ FFE
Logical FFF000 FFF
address o FFF 200 B
Ny 2
Physical
memory

Figure 4.9: memory paging

In the above example, each 24 bit logical addresshme regarded as a 12-bit page numbers (higher
order bits) and a 12 bit offset within the pagedfess translation is performed with help of a
mapping table callepage-map table. PMT is constructed at process loading time in otde
establish the correspondence between the virtuhphysical address.

Logical Physical
address [~ jaddress
CPU[— P | d fFld Physical
PMT memory

Figure 4.10: Memory allocation with PMT
142



CIT315 OPERATING SYSTEM

For example, page 0 is placed in the frame whaatirgy address is FFDOOOH (Hex) with each
frame being 1000 H in size, the corresponding frawmaber is FFDH as indicated on the right

side of the physical memory.

The logic address translation in paged systemlustihted below, on the example of virtual

addresses 3200 H. such address is split into twe:pa

003 H indicates the page number and 200 H indichtesffset within that page. Page number is
used to index PMT and to obtain the correspondimgigal frame number (FFFH in our example)
this value is then concatenated with the offse@ (&) to produce the physical address (FFF 200

H) which is used as a reference address in physieatory.

FFF | 200

Logical Physical
addres [ } address
| CPU |—={ 003H | 200H | FFFH
PMT
o[ _FFD
1|__100
2| 103
3 FEF Physical
memory

If the capacity of physical memoryns and the size of each pageithen the number of frames

in the physical memory will be

f=2

Both m andp are usually integers power of 2, thus resultinfbeing also an integer.

The page size is similar to the frame size whidateiined by the hardware and it varies according
to architecture of computer system. For conveni@fceapping, page sizes are usually an integer
power of 2. If the size of a logical address spacZ'and page size is"2inits, then the higher
orderm — nunits of logical address designate the page nuanmethe n low order units designate

the page offset. Thus, the logical address is ddfas:
143



CIT315 OPERATING SYSTEM

Page number Page offset
p d
m-n n

Wherep is the index number in the page table dnslthe offset value (displacement)

Note: If the page size is not the powerdthe separation gfandd is not possible

3.2 Memory Segmentation

Segmentation is another technique for rilba-contiguous allocation. It is different fronpaging
as pages are physical in nature and hence afixaf size, whereas segmentation are logical

division of a program and hence arevafiablesize.

It is a memory management scheme that supportiser view of memory rather thasystem view
of memory as paging. In this case, we divide tlgeckl address space into different segments. For

simplicity, the segments are referred by a segmemtber, rather than the segment name.
Thus, alogical address consist of two parts: <segment_name, offset>

The size of the segment varies according to treestated in it or the nature of operation performed

on that segment.

So, segmentation is a method of dividing memony intlependent address space caégghents.
Each segment consist of linear sequence (0,1,2,8f address starting from 0 to maximum value
depending upon the size of segment.

Like in paging system, we face the same problersegmentation that how the compiler will
generate 2-d array and how it is used in addressslation? When we put all segments in a
conceptual manner one after the other as shownwvb#ten it is clear that the compiler itself has
to generate the 2-d address (s, d) ie (segmermifise;f)

144



CIT315 OPERATING SYSTEM

Segment No. 0 1 2 3

.Lirnit address | 0-999 | 1000-1699 | 1700-2499 | 2500-3399

Figure 4.11: Virtual Address segmentation

This is different from paging system in which agbndimensional virtual address and two-
dimensional address would be exactly same in biftang as the page size is an integer power of
2. In segmentation it is not possible as the seggtien size is unpredictable. So we need to
express the address 2d form. So, the virtual address space is divided tato parts in which
higher order units refers wie, segment number and lower order units refeli¢adisplacement

(limit value).

15 13 0
s d

Segment number Displacement

3.3Cases/Examples

The logic address translation in paged systemlustiated below, on the example of virtual
addresses 3200 H, such address is split into twis:pa

003 H indicates the page number and 200 H indichtesffset within that page. Page number is
used to index PMT and to obtain the correspondimygigal frame number (FFFH in our example)
this value is then concatenated with the offse® (B to produce the physical address (FFF 200

H) which is used as a reference address in physieaiory.

145



CIT315 OPERATING SYSTEM

Logical Physical
addres | address
| cPU |—={ 003H | 200H | FEFH
PMT
0 FFD
1 100
2 103
C FFF Physical
memory

!l
Discussion

What technique best solve the memory allocationeis?

4.0 Self-Assessment/Exercises

1. Consider a logical address space of eight pagefls1024 words, each mapped onto a

physical memory of 32 frames .
1) How many bitsarein thelogical address?
2) How many bitsarein the physical address?
Answer
let No of bits in the physical memory be m,
Then the size of physical memory™
Given: No of pages = 8 2° and No of frames = 322°

Size of each frame = size of each page = 1024 =

So f=2 25=2
P

210
Cﬂm - 25 X210 = 215
Applying log to the base 2 On both sides resuits= 15
So, required No of bits in physical memory = 15 bit

146



CIT315 OPERATING SYSTEM

Similarly, assuming No bits in logical memory bé&en the size of logical memory2®

size of logical memory

So No. of pages =

size of each page

21’1
or 23 =5
or 20 =23x210=7213
Applying log to the base 2 on both sides resultd:

So No of bits required in logical memory = 13 bits

2. Consider the following segment table: what arehte physical address for the following
logical addresses? (i) 0430, (ii) 110, (iii) 250Qy) 3400 (v) 4112.

Segment | Base Length
0 219 600
p | 2300 14
2 90 100
3 1327 580
4 1952 96
Answer

For the given logical address the first digits refe the segment no. S while remaining digits
refers to the offset value die in (i) 0430 thédigit O refer to segment and 430 refers to offset

value for the logical address (0430). Also the sizgegment O is 600 as shown in the given table.
Physical address for logical address 0430 will lmase + offset(0430) = 219 + 430 = 649
Similarly, (if) physical address for 110 = 23000+42310

(iif) Physical address for 2500 = 90 + 500 = 580Gt (it is impossible since the

segment size is 100 so it is illegal address)

(iv) physical address for 3400 = 1327 + 400 = 1727

147



CIT315 OPERATING SYSTEM

(v) physical address for 4112 = illegal addresthassize of segment
four (96) < offset value (112)

19

5.0 Conclusion

When all page frames are in use, the operating@systust select a page frame to reuse for the
page the program now needs. If the evicted pageefraas dynamically allocated by a program
to hold data, or if a program modified it sincevds read into RAM, it must be written out to disk
before being freed. If a program later referenbesevicted page, another page fault occurs and
the page must be read back into RAM.

>

Paging is a memory management scheme that elinsilaéeneed for contiguous allocation of

6.0 Summary

physical memory. This scheme permits the physidalress space of a process to be non —
contiguous. A process is divided into Segments. cfhanks that a program is divided into which

are not necessarily all of the same sizes areccatgments.

7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew, S. T. (1987).Operating Systems: Design and Implementatidtrentice-Hall

International, Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(id. Marcia & J. Tracy (eds.); Fourth).
148



CIT315 OPERATING SYSTEM

Pearson Education.

Dhananjay, M. D. (2009)0perating Systems A Concept-Based Appro@&hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (2015PDperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

Difference between Paging and Segmentatign.d.). Retrieved May 1, 2022, from

https://www.tutorialspoint.com/difference-betweemgmg-and-segmentation

Difference Between Paging and Segmentation | @iffez Betweerin.d.). Retrieved May 1, 2022,
from http://www.differencebetween.net/technologif&tience-between-paging-and-

segmentation/

149



CIT315 OPERATING SYSTEM

Unit 4 Memory Caching
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Cache Concepts

3.2Memory Hierarchy
3.3Memory Cache Lookup

3.4 Cases/Examples
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary

7.0 References/Further Reading

150



CIT315 OPERATING SYSTEM

@1.0 Introduction

Caches are central to the design of a huge nunfdeardware and software systems, including
operating systems, Internet naming, web clientsl aweb servers. In particular, smartphone
operating systems are often memory constrainednaust manage memory carefully. Server
operating systems make extensive use of remote nyegnd remote disk across the data center,
using the local server memory as a cache. Evenaeskerating systems use caching extensively
in the implementation of the file system. Most impatly, understanding when caches work and

when they do not is essential to every computetesys designer.

\_‘@ 2.0 Intended Learning Outcomes (ILOS)

At the end of this unit, students will able to

¢ Understand the importance of cache

e How companies have succeeded as a result of cagim®m

)

u.-—-!
(S

1]

3.0 Main Content

3.1 Cache Concept

A cache is a copy of a computation or data thatbmaaccessed more quickly than the original.

While any object on my page might change from mdrteemoment, it seldom does.

The simplest kind of a cache is a memory caclstoies (address, value) pairs. When we need to
read value of a certain memory location, we fimtsult the cache, and it either replies with the
value (if the cache knows it) and otherwise it fards the request onward. If the cache has the

value, that is called a caché. If the cache does not, that is called a canlss.

151



CIT315 OPERATING SYSTEM

O

Fetoh Faloh
Agdidress Adgrese ln | Addrnas
: Cacha? ikelesguibmimte S =

o
i
Siore Value
iy ﬁ%@%’s@

x

i
Figure 4.12: Cache

For a memory cache to be useful, two propertied te&old. First, the cost of retrieving data out

of the cache must be significantly less than fetghthe data from memory. In other words, the
cost of a cache hit must be less than a cache anisg would just skip using the cache. Second,
the likelihood of a cache hit must be high enowmiméake it worth the effort. Predictability sources

help cache activities to be very accessible. Tealgocality, spatial locality and Prefetch are all

techniques of cache.

In Temporal locality, programs tend to reference slame instructions and data that they had
recently accessed; Spatial locality, Programs teng@ference data near other data that has been
recently referenced. Prefetch fetch data aheadref before needed. For example, if the file
system observes the application reading a sequehbtéocks into memory, it will read the

subsequent blocks ahead of time, without waitinga@sked.
Putting these together, the latency of a read stds@s follows:

Latency(read request) = Prob(cache hit) x Latency@che hit) + Prob(cache miss) x

Latency(cache miss)

152



CIT315 OPERATING SYSTEM

Casha
Slore Value Stors Value Faloh
at Address gt Addeacs Address
aaaaaa oS SR A e 570 A ok B i S I ot AT TR B S S TS
WhiteBuiter
.%
H
Sors Value
iy Goeche 5
; Store Vakse
at ddhdroes

W ¥hlie 1 §?%¥$§f¥ﬂ o s
Figure 4.13: Operation of a memory cache write

The behavior of a cache on a write operation isvshia Figure 4.13. The operation is a bit more
complex, but the latency of a write operation isi@ato understand. Most systems buffer writes.
As long as there is room in the buffer, the comportacan continue immediately while the data
are transferred into the cache and to memory irb#okground. Subsequent read requests must
check both the write buffer and the cache — retigmata from the write buffer if it is the latest
copy. In the background, the system checks if thdress is in the cache. If not, the rest of the
cache block must be fetched from memory and thelated with the changed value. Finally, if
the cache is write-through, all updates are semediately onward to memory. If the cache is
write-back, updates can be stored in the cachepalydsent to memory when the cache runs out

of space and needs to evict a block to make roora fiew memory block.

3.2 Memory Hierarchy

When we are deciding whether to use a cache ingheating system or some new application, it
is helpful to start with an understanding of thetaand performance of various levels of memory

and disk storage.

Cache Hit Cost Size
1st level cache/sllevel TLB 1ns 64KB
2nd level cache/TLB 4 ns 256KB

153



CIT315 OPERATING SYSTEM

3 level cache 12 ns 2 MB
Memory (DRAM) 100 ns 10 GB
Data Center Memory (DRAM) 10@s 100 TB
Local non-volatile memory 10@s 100 GB
Local Disk 10 ms 1TB
Data center disk 10 ms 100 PB
Remote data center disk 200 ms 1 XB

There is a fundamental tradeoff between the speel, and cost of storage. The smaller memory

is, the faster it can be; the slower memory isctieaper it can be.

First-level cache Most modern processor architectures contain al dimst-level, virtually
addressed, cache very close to the processorngelsig keep the processor fed with instructions

and data at the clock rate of the processor.

Second-level cacheBecause it is impossible to build a large cachd¢aat as a small one, the
processor will often contain a second-level, phalrcaddressed cache to handle cache misses
from the first-level cache.

Third-level cache Likewise, many processors include an even laglewer third-level cache to
catch second-level cache misses. This cache ia eftared across all of the on-chip processor

cores.

First-and second-level TLB The translation lookaside buffer (TLB) will albe organized with
multiple levels: a small, fast first-level TLB dgaed to keep up with the processor, backed up by

a larger, slightly slower, second-level TLB to d¢aftst-level TLB misses.

Main memory (DRAM). From a hardware perspective, the first-, secaamt, third-level caches
provide faster access to main memory; from a soéwwarspective, however, main memory itself

can be viewed as a cache.

Data center memory (DRAM). With a high-speed local area network such as a ceter, the
latency to fetch a page of data from the memowry méarby computer is much faster than fetching
154



CIT315 OPERATING SYSTEM

it from disk. In aggregate, the memory of nearbglaswill often be larger than that of the local
disk. Using the memory of nearby nodes to avoidatency of going to disk is called cooperative
caching, as it requires the cooperative manageuwfetite nodes in the data center. Many large
scale data center services, such as Google andd@cemake extensive use of cooperative

caching.

Local disk or non-volatile memory. For client machines, local disk or non-volatleessh memory
can serve as backing store when the system ruraf ougmory. In turn, the local disk serves as a
cache for remote disk storage. For example, welvses store recently fetched web pages in the
client file system to avoid the cost of transfegrithe data again the next time it is used; once
cached, the browser only needs to validate withsdrger whether the page has changed before

rendering the web page for the user.

Data center disk The aggregate disks inside a data center pramdemous storage capacity

compared to a computer’s local disk, and eveniveléb the aggregate memory of the data center.

Remote data center diskGeographically remote disks in a data centemareh slower because

of wide-area network latencies, but they provideess to even larger storage capacity in
aggregate. Many data centers also store a copheofdata on a remote robotic tape system, but
since these systems have very high latency (mehsuithe tens of seconds), they are typically

accessed only in the event of a failure.
3.3 Memory Cache Lookup

A memory cache maps a sparse set of addresses tiath values stored at those addresses. You
can think of a cache as a giant table with two rwwis: one for the address and one for the data
stored at that address. To exploit spatial locaéiich entry in the table will store the valuesafor

block of memory, not just the value for a singlenmoey word.

We need to be able to rapidly convert an addreBaddhe corresponding data, while minimizing

storage overhead. Three common mechanisms for tackep are:
Fully associative

With a fully associative cache, the address castdred anywhere in the table, and so on a lookup,
the system must check the address against alleoéikries in the table as illustrated in Figure

below. There is a cache hit if any of the tableieatmatch. Because any address can be stored
155



CIT315 OPERATING SYSTEM

anywhere, this provides the system maximal fleitibWhen it needs to choose an entry to discard
when it runs out of space. Physical memory is by fagsociative cache. Any page frame can hold

any virtual page, and we can find where each Migitage is stored using a multi-level tree lookup

Addraes

E. Address Yalie

Matching Entry L

’WW‘&@diﬁ ﬁﬁgﬁ’éﬁg
Figure 4.14: Full Associate lookup

Direct mapped

With a direct mapped cache, each address can ersyobed in one location in the table. Lookup
is easy: we hash the address to its entry, as shioligure 4.14. There is a cache hit if the adslres

matches that entry and a cache miss otherwise.

A direct mapped cache allows efficient lookup, tubses much of that advantage in decreased
flexibility. If a program happens to need two diffat addresses that both hash to the same entry,

such as the program counter and the stack pothtegystem will thrash.

P

» (ata

Figure 4.15: Direct mapped cache lookup

Set associative

156



CIT315 OPERATING SYSTEM

A set associative cache melds the two approacHewirag a tradeoff of slightly slower lookup
than a direct mapped cache in exchange for mosteoflexibility of a fully associative cache.
With a set associative cache, we replicate theedimapped table and lookup in each replica in
parallel. A k set associative cache has k repliaggrticular address block can be in any of the k
replicas. (This is equivalent to a hash table withucket size of k.) There is a cache hit if the

address matches any of the replicas.

A set associative cache avoids the problem of liimgswith a direct mapped cache, provided the
working set for a given bucket is larger than kmakt all hardware caches and TLBs today use

set associative matching; an 8-way set associatigke structure is common.

*ﬁ%}mﬁ ) ke

Figure 4.16: set associative cache

M
Discussion

Explain the Cache technique in web server prefetchi

19

To make cache behavior more predictable and mdeetefe, operating systems use a concept

5.0 Conclusion

called page coloring. With page coloring, physjgage frames are partitioned into sets based on

which cache buckets they will use. For examplehwi2 MB 8-way set associative cache and 4

157



CIT315 OPERATING SYSTEM

KB pages, there will be 64 separate sets, or coldie operating system can then assign page

frames to spread each application’s data acrosgit@us colors.

L1

Regardless of the program, a sufficiently largeheawill have a high cache hit rate. In the limit,

6.0 Summary

if the cache can fit all of the program’s memory aata, the miss rate will be zero once the data
are loaded into the cache. At the other extrenmifficiently small cache will have a very low
cache hit rate.

‘r-‘x |
7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefs. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(id. Marcia & J. Tracy (eds.); Fourth).
Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (2015Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8veks, Ltd.

Lookup Caches Overview (2022, January 24). https://docs.informatica.ctatd-
integration/powercenter/10-2/transformation-guidekiup-caches/lookup-caches-

overview.html

Lutkevich, B. (n.d.)What is Cache Memory? Cache Memory in Computerdatfred Retrieved

May 1, 2022, from https://www.techtarget.com/seatatage/definition/cache-memory

Memory Hierarchy Design and its Characteristics edBsforGeeks(2018, December 17).

158



CIT315 OPERATING SYSTEM

https://www.geeksforgeeks.org/memory-hierarchy-glesind-its-characteristics/

What is Memory Hierarchy: Definition, Diagram, Artgcture and Advantageén.d.). Retrieved

May 1, 2022, from https://www.elprocus.com/memorgrarchy-in-computer-architecture/

159



CIT315 OPERATING SYSTEM

Unit 4 Thrashing and Replacement Policies
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Thrashing

3.2Replacement Policies

3.3 Cases/Examples
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary

7.0 References/Further Reading

@1.0 Introduction

In case, if the page fault and swapping happensfrequently at a higher rate, then the operating
system has to spend more time swapping these pHgesstate in the operating system is termed
thrashing. Because of thrashing the CPU utilizatsogoing to be reduced. Replacement policies

introduce solutions to thrashing problem.

LI@ 2.0 Intended Learning Outcomes (ILOS)

At the end of this unit, student will able to

¢ Find out the cause of thrashing in operating system

¢ Demonstrate policies to address thrashing issues

160



CIT315 OPERATING SYSTEM

3.0 Main Content

3.1 Thrashing

Thrash is the poor performance of a virtual memory (agipg) system when the same pages are
being loaded repeatedly due to a lack of main mgnwkeep them in memory. Depending on the
configuration and algorithm, the actual throughplua system can degrade by multiple orders of
magnitudeThrashing occurs when a computer's virtual memory resousice®verused, leading
to a constant state of paging and page faultitiig most application-level processing. It causes
the performance of the computer to degrade or gedlaThe situation can continue indefinitely
until the user closes some running applicationtheractive processes free up additional virtual

memaory resources.

Thrashing

CPU utilization

Y

degree of multiprogramming

Figure 4.17: CPU utilization against degree of mpuligramming

Whenever thrashing starts, the operating systess ta apply either the Global page replacement

Algorithm or the Local page replacement algorithm.
1. Global Page Replacement

Since global page replacement can bring any pagees to bring more pages whenever thrashing

is found. But what actually will happen is thatprocess gets enough frames, and as a result, the

161



CIT315 OPERATING SYSTEM

thrashing will increase more and more. Therefdre,dlobal page replacement algorithm is not

suitable when thrashing happens.
2. Local Page Replacement

Unlike the global page replacement algorithm, Igzaje replacement will select pages which only
belong to that process. So there is a chance t@eeithe thrashing. But it is proven that there are
many disadvantages if we use local page replaceimietefore, local page replacement is just an

alternative to global page replacement in a thraghcenario.

Causes of Thrashing

Programs or workloads may cause thrashing, areutlts in severe performance problems, such
as:

(]

If CPU utilization is too low, we increase the degof multiprogramming by introducing
a new system. A global page replacement algorithosed. The CPU scheduler sees the

decreasing CPU utilization and increases the degfremiltiprogramming.
o CPU utilization is plotted against the degree oftiprogramming.
o As the degree of multiprogramming increases, CRiization also increases.

o If the degree of multiprogramming is increased Harf thrashing sets in, and CPU

utilization drops sharply.

o So, at this point, to increase CPU utilization émdtop thrashing, we must decrease the

degree of multiprogramming.

How to Eliminate Thrashing

Thrashing has some negative impacts on hard deaétthand system performance. Therefore, it
iSs necessary to take some actions to avoid it.€eBolve the problem of thrashing, here are the

following methods, such as:

o Adjust the swap file sizelf the system swap file is not configured correctligk thrashing

can also happen to you.
10z



CIT315 OPERATING SYSTEM

o Increase the amount of RAM:As insufficient memory can cause disk thrashingg o
solution is to add more RAM to the laptop. With onemory, your computer can handle

tasks easily and don't have to work excessivelne@aly, it is the best long-term solution.

o Decrease the number of applications running on theomputer: If there are too many
applications running in the background, your systegource will consume a lot. And the
remaining system resource is slow that can resuthiashing. So while closing, some

applications will release some resources so thatcgo avoid thrashing to some extent.

o Replace programs:Replace those programs that are heavy memory matupith

equivalents that use less memory.

3.2 Replacement Policies

Policies also vary depending on the setting: hardwaches use a different replacement policy
than the operating system does in managing mainamneas a cache for disk. A hardware cache
will often have a limited number of replacementicks, constrained by the set associativity of
the cache, and it must make its decisions verydlapEven within the operating system, the
replacement policy for the file buffer cache iseofdifferent than the one used for demand paged

virtual memory, depending on what information isigeavailable about the access pattern.

Page Fault —A page fault happens when a running program aesesamemory page that is

mapped into the virtual address space, but noeldaa physical memory.

Since actual physical memory is much smaller thelal memory, page faults happen. In case
of page fault, Operating System might have to mplane of the existing pages with the newly
needed page. Different page replacement algorifuggest different ways to decide which page

to replace. The target for all algorithms is toueel the number of page faults.

163



CIT315 OPERATING SYSTEM

Page Replacement Algorithms
1. First In First Out(FIFO)

This is the simplest page replacement algorithnthis algorithm, the operating system keeps
track of all pages in the memory in a queue, tidest page is in the front of the queue. When a

page needs to be replaced, the page in the fraheajueue is selected for removal.

Example-1Consider page reference string 1, 3, B, 8, 3 with 3 page frames. Find number of

page faults.
Page 1,3,0,3,5,6,3
reference
1 3 0 3 5 6 3
| | |9 |o 0 0 3
| Ia] 13| |3 3 6| |6
1| [1] [ |1 |5 5| 5]
Miss Miss Miss Hit Miss Miss Miss

Total Page Fault =6

Initially all slots are empty, so when 1, 3, O cathey are allocated to the empty slots —> 3

Page Faults.
when 3 comes, it is already in memory so —> 0 Hegyéts.

Then 5 comes, it is not available in memory sejftlaces the oldest page slot i.e 1. —>1 Page

Fault.

6 comes, it is also not available in memory sceeplaces the oldest page slot i.e 3 —>1 Page

Fault.

Finally when 3 come it is not available so it rey@a 0 1 page fault

164



CIT315 OPERATING SYSTEM

2. Optimal Page replacement

In this algorithm, pages are replaced which wowthbe used for the longest duration of time in

the future.

Example-2:Consider the page references 7, 0, Q, 2, 0, 4, 2, 3, 0, 3, 2, with 4 page frame.
Find number of page fault.

Fage 7,0,1,2,03,04,2,3,03,23 No. of Page frame - 4

reference

7 0 1 2 0 3 0 4 2 3 0 3 2 3

1Ll 12 £ 2 2 2| (2] |2 2 2112 2

1 1 1 1 1 44| |a| |4 4| | 4 4

0 0 0 0 0 0 0| |0 0 0 0 0

7 7 7 7 7 3 3 3 3 3 3 3 3 3

Miss Miss Miss Miss Hit Miss Hit Miss Hit Hit Hit  Hit  Hit Hit

Total Page Fault=6

Initially all slots are empty, so when 7 0 1 2 allecated to the empty slots —> 4 Page faults
0 is already there so —> 0 Page fault.

when 3 came it will take the place of 7 because ot used for the longest duration of time in

the future.—>1 Page fault.
0 is already there so —> 0 Page fault..

4 will takes place of 1 —> 1 Page Fault.

165



CIT315 OPERATING SYSTEM

Now for the further page reference string —> 0 Plagét because they are already available in

the memory.

Optimal page replacement is perfect, but not péssibpractice as the operating system cannot
know future requests. The use of Optimal Page cephent is to set up a benchmark so that

other replacement algorithms can be analyzed afgiains

3. Least Recently Used
In this algorithm page will be replaced which iaderecently used.

Example-3Consider the page reference string 7, ®,@, 3, 0, 4, 2, 3, 0, 3, 2 with 4 page frames.

Find number of page faults.

Page

7.0,.1.2.03.04.2.3.03.2.3 No. of Page frame - 4
reference
0 1 2 0 3 0 4 2 3 0 3 2 3
L1 [ 2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2
L1 ] [ [ (1] (e (4] [4] [a] [2][a] [a
&'0 of [of [of [o] [o][o][o] [o] [0] [o] [0]
17| |7} 7| (7] [3] |3] |s][3] (3] [3] [3 3
Miss Miss Miss Miss Hit Miss Hit Miss Hit Hit Hit Hit Hit Hit

Total Page Fauit =6

Initially all slots are empty, so when 7 0 1 2 allecated to the empty slots —> 4 Page faults
0 is already their so —> 0 Page fault.
when 3 came it will take the place of 7 because least recently used —>1 Page fault

0 is already in memory so —> 0 Page fault.

166



CIT315 OPERATING SYSTEM

4 will takes place of 1 —> 1 Page Fault

Now for the further page reference string —> 0 Plagét because they are already available in

the memory.

l!l
S
Discussion

Discuss any other replacement algorithms you know
4.0 Self-Assessment/Exercises

Consider the following page-reference string:
1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

How many page faults would occur for the followneglacement algorithms, assuming one, two,
three, four, five, six, or seven frames? Rememiatr dll frames are initially empty, so your first

unique pages will all cost one fault each.

e LRU replacement.
e FIFO replacement.

e Optimal replacement.

Answer

167



CIT315 OPERATING SYSTEM

Number of frames LRU FIFO Optimal

1 20 20 20
> 18 18 15
3 IS 16 11
-4 10 14 8]
5 s 10 T
6 7 10 7
7 7 7 7

a. Define a page-replacement algorithm using tasdidea. Specifically address the problems of
(1) what the initial value of the counters is, \{@)en counters are increased, (3) when counters are

decreased, and (4) how the page to be replacetbisted.

b. How many page faults occur for your algorithmtfee following reference string, for four page
frames?1,2,3,4,5,3,4,1,6,7,8,7,8,8,B,5,4,5, 4, 2.

c. What is the minimum number of page faults foroptimal page-replacement strategy for the

reference string in part b with four page frames?

Answer

a. Define a page-replacement algorithm addresbmg@toblems of:

i. Initial value of the counters: 0.

ii. Counters are increased whenever a new pagsecmted with that frame.

iii. Counters are decreased whenever one of thegpagsociated with that frame is no longer
required. iv. How the page to be replaced is setedind a frame with the smallest counter. Use
FIFO for breaking ties.

b. 14 page faults

c. 11 page faults

168



CIT315 OPERATING SYSTEM

19

Page replacement becomes necessary when a pagecfauls and there are no free page frames

5.0 Conclusion

in memory. However, another page fault would arishe replaced page is referenced again.

Hence it is important to replace a page that idikely to be referenced in the immediate future.

@

Policies also vary depending on the setting: hardwaches use a different replacement policy

6.0 Summary

than the operating system does in managing mainameas a cache for disk. A hardware cache
will often have a limited number of replacementicke, constrained by the set associativity of
the cache, and it must make its decisions veryhapin the operating system, there is often both
more time to make a choice and a much larger nudiehred items to consider; e.g., with 4 GB
of memory, a system will have a million separakB4pages to choose from when deciding which

to replace.

‘r.‘x |
7.0 References/Further Reading

Abraham, S., Peter, B. G., & Gagne, G. (20@)erating System Concefts. Weisman (ed.);
8th ed.). John Wiley & Sons Inc.

Andrew S, T., & Bos, H. (2015Modern Operating Systen(ld. Marcia & J. Tracy (eds.); Fourth).

Pearson Education.

Dhananjay, M. D. (2009)Operating Systems A Concept-Based Appra@hMelinda (ed.)).
McGraw-Hill Higher Education.

Thomas, A., & Dahlin, M. (20150Dperating Systems Principles & Practice Volume Memory
Managemen(S. Kaplan & S. Whitney (eds.); Second). Recur8iveks, Ltd.

Cache Replacement Policy - an overview | ScieneeDifopics (n.d.). Retrieved May 1, 2022,

169



CIT315 OPERATING SYSTEM

from https://www.sciencedirect.com/topics/compugeience/cache-replacement-policy

Kumari Riddhi. (2021). Thrashing in OS (Operating System) - Scaler Topics

https://www.scaler.com/topics/thrashing-in-os/

Techniques to handle Thrashing -  GeeksforGeekg2022, March  11).

https://www.geeksforgeeks.org/techniques-to-hatiaiashing/

170



